In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.
Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept.
A function is often denoted by a letter such as f, g or h. The value of a function f at an element x of its domain (that is, the element of the codomain that is associated with x) is denoted by f(x); for example, the value of f at x = 4 is denoted by f(4). Commonly, a specific function is defined by means of an expression depending on x, such as in this case, some computation, called function evaluation, may be needed for deducing the value of the function at a particular value; for example, if then
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
Functions are widely used in science, engineering, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.
The concept of a function has evolved significantly over centuries, from its informal origins in ancient mathematics to its formalization in the 19th century. See History of the function concept for details.
Definition
A function f from a set X to a set Y is an assignment of one element of Y to each element of X. The set X is called the domain of the function and the set Y is called the codomain of the function.
If the element y in Y is assigned to x in X by the function f, one says that f maps x to y, and this is commonly written In this notation, x is the argument or variable of the function. A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function.
A function f, its domain X, and its codomain Y are often specified by the notation One may write instead of , where the symbol (read 'maps to') is used to specify where a particular element x in the domain is mapped to by f. This allows the definition of a function without naming. For example, the square function is the function
The domain and codomain are not always explicitly given when a function is defined. In particular, it is common that one might only know, without some (possibly difficult) computation, that the domain of a specific function is contained in a larger set. For example, if is a real function, the determination of the domain of the function requires knowing the zeros of f. This is one of the reasons for which, in mathematical analysis, "a function from X to Y " may refer to a function having a proper subset of X as a domain. For example, a "function from the reals to the reals" may refer to a real-valued function of a real variable whose domain is a proper subset of the real numbers, typically a subset that contains a non-empty open interval. Such a function is then called a partial function.
The range or image of a function is the set of the images of all elements in the domain.
A function f on a set S means a function from the domain S, without specifying a codomain. However, some authors use it as shorthand for saying that the function is f : S → S.
Formal definition
The above definition of a function is essentially that of the founders of calculus, Leibniz, Newton and Euler. However, it cannot be formalized, since there is no mathematical definition of an "assignment". It is only at the end of the 19th century that the first formal definition of a function could be provided, in terms of set theory. This set-theoretic definition is based on the fact that a function establishes a relation between the elements of the domain and some (possibly all) elements of the codomain. Mathematically, a binary relation between two sets X and Y is a subset of the set of all ordered pairs such that and The set of all these pairs is called the Cartesian product of X and Y and denoted Thus, the above definition may be formalized as follows.
A function with domain X and codomain Y is a binary relation R between X and Y that satisfies the two following conditions:
- For every in there exists in such that
- If and then
This definition may be rewritten more formally, without referring explicitly to the concept of a relation, but using more notation (including set-builder notation):
A function is formed by three sets, the domain the codomain and the graph that satisfy the three following conditions.
Partial functions
Partial functions are defined similarly to ordinary functions, with the "total" condition removed. That is, a partial function from X to Y is a binary relation R between X and Y such that, for every there is at most one y in Y such that
Using functional notation, this means that, given either is in Y, or it is undefined.
The set of the elements of X such that is defined and belongs to Y is called the domain of definition of the function. A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function.
In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.
In calculus, a real-valued function of a real variable or real function is a partial function from the set of the real numbers to itself. Given a real function its multiplicative inverse is also a real function. The determination of the domain of definition of a multiplicative inverse of a (partial) function amounts to compute the zeros of the function, the values where the function is defined but not its multiplicative inverse.
Similarly, a function of a complex variable is generally a partial function with a domain of definition included in the set of the complex numbers. The difficulty of determining the domain of definition of a complex function is illustrated by the multiplicative inverse of the Riemann zeta function: the determination of the domain of definition of the function is more or less equivalent to the proof or disproof of one of the major open problems in mathematics, the Riemann hypothesis.
In computability theory, a general recursive function is a partial function from the integers to the integers whose values can be computed by an algorithm (roughly speaking). The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition (see Halting problem).
Multivariate functions
A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. Such functions are commonly encountered. For example, the position of a car on a road is a function of the time travelled and its average speed.
Formally, a function of n variables is a function whose domain is a set of n-tuples. For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every binary operation. Commonly, an n-tuple is denoted enclosed between parentheses, such as in When using functional notation, one usually omits the parentheses surrounding tuples, writing instead of
Given n sets the set of all n-tuples such that is called the Cartesian product of and denoted
Therefore, a multivariate function is a function that has a Cartesian product or a proper subset of a Cartesian product as a domain.
where the domain U has the form
If all the are equal to the set of the real numbers or to the set of the complex numbers, one talks respectively of a function of several real variables or of a function of several complex variables.
Notation
There are various standard ways for denoting functions. The most commonly used notation is functional notation, which is the first notation described below.
Functional notation
The functional notation requires that a name is given to the function, which, in the case of a unspecified function is often the letter f. Then, the application of the function to an argument is denoted by its name followed by its argument (or, in the case of a multivariate functions, its arguments) enclosed between parentheses, such as in
The argument between the parentheses may be a variable, often x, that represents an arbitrary element of the domain of the function, a specific element of the domain (3 in the above example), or an expression that can be evaluated to an element of the domain ( in the above example). The use of a unspecified variable between parentheses is useful for defining a function explicitly such as in "let ".
When the symbol denoting the function consists of several characters and no ambiguity may arise, the parentheses of functional notation might be omitted. For example, it is common to write sin x instead of sin(x).
Functional notation was first used by Leonhard Euler in 1734. Some widely used functions are represented by a symbol consisting of several letters (usually two or three, generally an abbreviation of their name). In this case, a roman type is customarily used instead, such as "sin" for the sine function, in contrast to italic font for single-letter symbols.
The functional notation is often used colloquially for referring to a function and simultaneously naming its argument, such as in "let be a function". This is an abuse of notation that is useful for a simpler formulation.
Arrow notation
Arrow notation defines the rule of a function inline, without requiring a name to be given to the function. It uses the ↦ arrow symbol, pronounced "maps to". For example, is the function which takes a real number as input and outputs that number plus 1. Again, a domain and codomain of is implied.
The domain and codomain can also be explicitly stated, for example:
This defines a function sqr from the integers to the integers that returns the square of its input.
As a common application of the arrow notation, suppose is a function in two variables, and we want to refer to a partially applied function produced by fixing the second argument to the value t0 without introducing a new function name. The map in question could be denoted using the arrow notation. The expression (read: "the map taking x to f of x comma t nought") represents this new function with just one argument, whereas the expression f(x0, t0) refers to the value of the function f at the point (x0, t0).
Index notation
Index notation may be used instead of functional notation. That is, instead of writing f (x), one writes
This is typically the case for functions whose domain is the set of the natural numbers. Such a function is called a sequence, and, in this case the element is called the nth element of the sequence.
The index notation can also be used for distinguishing some variables called parameters from the "true variables". In fact, parameters are specific variables that are considered as being fixed during the study of a problem. For example, the map (see above) would be denoted using index notation, if we define the collection of maps by the formula for all .
Dot notation
In the notation the symbol x does not represent any value; it is simply a placeholder, meaning that, if x is replaced by any value on the left of the arrow, it should be replaced by the same value on the right of the arrow. Therefore, x may be replaced by any symbol, often an interpunct " ⋅ ". This may be useful for distinguishing the function f (⋅) from its value f (x) at x.
For example, may stand for the function , and may stand for a function defined by an integral with variable upper bound: .
Specialized notations
There are other, specialized notations for functions in sub-disciplines of mathematics. For example, in linear algebra and functional analysis, linear forms and the vectors they act upon are denoted using a dual pair to show the underlying duality. This is similar to the use of bra–ket notation in quantum mechanics. In logic and the theory of computation, the function notation of lambda calculus is used to explicitly express the basic notions of function abstraction and application. In category theory and homological algebra, networks of functions are described in terms of how they and their compositions commute with each other using commutative diagrams that extend and generalize the arrow notation for functions described above.
Functions of more than one variable
In some cases the argument of a function may be an ordered pair of elements taken from some set or sets. For example, a function f can be defined as mapping any pair of real numbers to the sum of their squares, . Such a function is commonly written as and referred to as "a function of two variables". Likewise one can have a function of three or more variables, with notations such as , .
Other terms
Term | Distinction from "function" |
---|---|
Map/Mapping | None; the terms are synonymous. |
A map can have any set as its codomain, while, in some contexts, typically in older books, the codomain of a function is specifically the set of real or complex numbers. | |
Alternatively, a map is associated with a special structure (e.g. by explicitly specifying a structured codomain in its definition). For example, a linear map. | |
Homomorphism | A function between two structures of the same type that preserves the operations of the structure (e.g. a group homomorphism). |
Morphism | A generalisation of homomorphisms to any category, even when the objects of the category are not sets (for example, a group defines a category with only one object, which has the elements of the group as morphisms; see Category (mathematics) § Examples for this example and other similar ones). |
A function may also be called a map or a mapping, but some authors make a distinction between the term "map" and "function". For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds). In particular map may be used in place of homomorphism for the sake of succinctness (e.g., linear map or map from G to H instead of group homomorphism from G to H). Some authors reserve the word mapping for the case where the structure of the codomain belongs explicitly to the definition of the function.
Some authors, such as Serge Lang, use "function" only to refer to maps for which the codomain is a subset of the real or complex numbers, and use the term mapping for more general functions.
In the theory of dynamical systems, a map denotes an evolution function used to create discrete dynamical systems. See also Poincaré map.
Whichever definition of map is used, related terms like domain, codomain, injective, continuous have the same meaning as for a function.
Specifying a function
Given a function , by definition, to each element of the domain of the function , there is a unique element associated to it, the value of at . There are several ways to specify or describe how is related to , both explicitly and implicitly. Sometimes, a theorem or an axiom asserts the existence of a function having some properties, without describing it more precisely. Often, the specification or description is referred to as the definition of the function .
By listing function values
On a finite set a function may be defined by listing the elements of the codomain that are associated to the elements of the domain. For example, if , then one can define a function by
By a formula
Functions are often defined by an expression that describes a combination of arithmetic operations and previously defined functions; such a formula allows computing the value of the function from the value of any element of the domain. For example, in the above example, can be defined by the formula , for .
When a function is defined this way, the determination of its domain is sometimes difficult. If the formula that defines the function contains divisions, the values of the variable for which a denominator is zero must be excluded from the domain; thus, for a complicated function, the determination of the domain passes through the computation of the zeros of auxiliary functions. Similarly, if square roots occur in the definition of a function from to the domain is included in the set of the values of the variable for which the arguments of the square roots are nonnegative.
For example, defines a function whose domain is because is always positive if x is a real number. On the other hand, defines a function from the reals to the reals whose domain is reduced to the interval [−1, 1]. (In old texts, such a domain was called the domain of definition of the function.)
Functions can be classified by the nature of formulas that define them:
- A quadratic function is a function that may be written where a, b, c are constants.
- More generally, a polynomial function is a function that can be defined by a formula involving only additions, subtractions, multiplications, and exponentiation to nonnegative integer powers. For example, and are polynomial functions of .
- A rational function is the same, with divisions also allowed, such as and
- An algebraic function is the same, with nth roots and roots of polynomials also allowed.
- An elementary function is the same, with logarithms and exponential functions allowed.
Inverse and implicit functions
A function with domain X and codomain Y, is bijective, if for every y in Y, there is one and only one element x in X such that y = f(x). In this case, the inverse function of f is the function that maps to the element such that y = f(x). For example, the natural logarithm is a bijective function from the positive real numbers to the real numbers. It thus has an inverse, called the exponential function, that maps the real numbers onto the positive numbers.
If a function is not bijective, it may occur that one can select subsets and such that the restriction of f to E is a bijection from E to F, and has thus an inverse. The inverse trigonometric functions are defined this way. For example, the cosine function induces, by restriction, a bijection from the interval [0, π] onto the interval [−1, 1], and its inverse function, called arccosine, maps [−1, 1] onto [0, π]. The other inverse trigonometric functions are defined similarly.
More generally, given a binary relation R between two sets X and Y, let E be a subset of X such that, for every there is some such that x R y. If one has a criterion allowing selecting such a y for every this defines a function called an implicit function, because it is implicitly defined by the relation R.
For example, the equation of the unit circle defines a relation on real numbers. If −1 < x < 1 there are two possible values of y, one positive and one negative. For x = ± 1, these two values become both equal to 0. Otherwise, there is no possible value of y. This means that the equation defines two implicit functions with domain [−1, 1] and respective codomains [0, +∞) and (−∞, 0].
In this example, the equation can be solved in y, giving but, in more complicated examples, this is impossible. For example, the relation defines y as an implicit function of x, called the Bring radical, which has as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and nth roots.
The implicit function theorem provides mild differentiability conditions for existence and uniqueness of an implicit function in the neighborhood of a point.
Using differential calculus
Many functions can be defined as the antiderivative of another function. This is the case of the natural logarithm, which is the antiderivative of 1/x that is 0 for x = 1. Another common example is the error function.
More generally, many functions, including most special functions, can be defined as solutions of differential equations. The simplest example is probably the exponential function, which can be defined as the unique function that is equal to its derivative and takes the value 1 for x = 0.
Power series can be used to define functions on the domain in which they converge. For example, the exponential function is given by . However, as the coefficients of a series are quite arbitrary, a function that is the sum of a convergent series is generally defined otherwise, and the sequence of the coefficients is the result of some computation based on another definition. Then, the power series can be used to enlarge the domain of the function. Typically, if a function for a real variable is the sum of its Taylor series in some interval, this power series allows immediately enlarging the domain to a subset of the complex numbers, the disc of convergence of the series. Then analytic continuation allows enlarging further the domain for including almost the whole complex plane. This process is the method that is generally used for defining the logarithm, the exponential and the trigonometric functions of a complex number.
By recurrence
Functions whose domain are the nonnegative integers, known as sequences, are sometimes defined by recurrence relations.
The factorial function on the nonnegative integers () is a basic example, as it can be defined by the recurrence relation
and the initial condition
Representing a function
A graph is commonly used to give an intuitive picture of a function. As an example of how a graph helps to understand a function, it is easy to see from its graph whether a function is increasing or decreasing. Some functions may also be represented by bar charts.
Graphs and plots
Given a function its graph is, formally, the set
In the frequent case where X and Y are subsets of the real numbers (or may be identified with such subsets, e.g. intervals), an element may be identified with a point having coordinates x, y in a 2-dimensional coordinate system, e.g. the Cartesian plane. Parts of this may create a plot that represents (parts of) the function. The use of plots is so ubiquitous that they too are called the graph of the function. Graphic representations of functions are also possible in other coordinate systems. For example, the graph of the square function
consisting of all points with coordinates for yields, when depicted in Cartesian coordinates, the well known parabola. If the same quadratic function with the same formal graph, consisting of pairs of numbers, is plotted instead in polar coordinates the plot obtained is Fermat's spiral.
Tables
A function can be represented as a table of values. If the domain of a function is finite, then the function can be completely specified in this way. For example, the multiplication function defined as can be represented by the familiar multiplication table
y x | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 |
2 | 2 | 4 | 6 | 8 | 10 |
3 | 3 | 6 | 9 | 12 | 15 |
4 | 4 | 8 | 12 | 16 | 20 |
5 | 5 | 10 | 15 | 20 | 25 |
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 decimal places:
x | sin x |
---|---|
1.289 | 0.960557 |
1.290 | 0.960835 |
1.291 | 0.961112 |
1.292 | 0.961387 |
1.293 | 0.961662 |
Before the advent of handheld calculators and personal computers, such tables were often compiled and published for functions such as logarithms and trigonometric functions.
Bar chart
A bar chart can represent a function whose domain is a finite set, the natural numbers, or the integers. In this case, an element x of the domain is represented by an interval of the x-axis, and the corresponding value of the function, f(x), is represented by a rectangle whose base is the interval corresponding to x and whose height is f(x) (possibly negative, in which case the bar extends below the x-axis).
General properties
This section describes general properties of functions, that are independent of specific properties of the domain and the codomain.
Standard functions
There are a number of standard functions that occur frequently:
- For every set X, there is a unique function, called the empty function, or empty map, from the empty set to X. The graph of an empty function is the empty set. The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements. Under the usual set-theoretic definition of a function as an ordered triplet (or equivalent ones), there is exactly one empty function for each set, thus the empty function is not equal to if and only if , although their graphs are both the empty set.
- For every set X and every singleton set {s}, there is a unique function from X to {s}, which maps every element of X to s. This is a surjection (see below) unless X is the empty set.
- Given a function the canonical surjection of f onto its image is the function from X to f(X) that maps x to f(x).
- For every subset A of a set X, the inclusion map of A into X is the injective (see below) function that maps every element of A to itself.
- The identity function on a set X, often denoted by idX, is the inclusion of X into itself.
Function composition
Given two functions and such that the domain of g is the codomain of f, their composition is the function defined by
That is, the value of is obtained by first applying f to x to obtain y = f(x) and then applying g to the result y to obtain g(y) = g(f(x)). In this notation, the function that is applied first is always written on the right.
The composition is an operation on functions that is defined only if the codomain of the first function is the domain of the second one. Even when both and satisfy these conditions, the composition is not necessarily commutative, that is, the functions and need not be equal, but may deliver different values for the same argument. For example, let f(x) = x2 and g(x) = x + 1, then and agree just for
The function composition is associative in the sense that, if one of and is defined, then the other is also defined, and they are equal, that is, Therefore, it is usual to just write
The identity functions and are respectively a right identity and a left identity for functions from X to Y. That is, if f is a function with domain X, and codomain Y, one has
- A composite function g(f(x)) can be visualized as the combination of two "machines".
- A simple example of a function composition
- Another composition. In this example, (g ∘ f )(c) = #.
Image and preimage
Let The image under f of an element x of the domain X is f(x). If A is any subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A, that is,
The image of f is the image of the whole domain, that is, f(X). It is also called the range of f, although the term range may also refer to the codomain.
On the other hand, the inverse image or preimage under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y. In symbols, the preimage of y is denoted by and is given by the equation
Likewise, the preimage of a subset B of the codomain Y is the set of the preimages of the elements of B, that is, it is the subset of the domain X consisting of all elements of X whose images belong to B. It is denoted by and is given by the equation
For example, the preimage of under the square function is the set .
By definition of a function, the image of an element x of the domain is always a single element of the codomain. However, the preimage of an element y of the codomain may be empty or contain any number of elements. For example, if f is the function from the integers to themselves that maps every integer to 0, then .
If is a function, A and B are subsets of X, and C and D are subsets of Y, then one has the following properties:
The preimage by f of an element y of the codomain is sometimes called, in some contexts, the fiber of y under f.
If a function f has an inverse (see below), this inverse is denoted In this case may denote either the image by or the preimage by f of C. This is not a problem, as these sets are equal. The notation and may be ambiguous in the case of sets that contain some subsets as elements, such as In this case, some care may be needed, for example, by using square brackets for images and preimages of subsets and ordinary parentheses for images and preimages of elements.
Injective, surjective and bijective functions
Let be a function.
The function f is injective (or one-to-one, or is an injection) if f(a) ≠ f(b) for every two different elements a and b of X. Equivalently, f is injective if and only if, for every the preimage contains at most one element. An empty function is always injective. If X is not the empty set, then f is injective if and only if there exists a function such that that is, if f has a left inverse.Proof: If f is injective, for defining g, one chooses an element in X (which exists as X is supposed to be nonempty), and one defines g by if and if Conversely, if and then and thus
The function f is surjective (or onto, or is a surjection) if its range equals its codomain , that is, if, for each element of the codomain, there exists some element of the domain such that (in other words, the preimage of every is nonempty). If, as usual in modern mathematics, the axiom of choice is assumed, then f is surjective if and only if there exists a function such that that is, if f has a right inverse. The axiom of choice is needed, because, if f is surjective, one defines g by where is an arbitrarily chosen element of
The function f is bijective (or is a bijection or a one-to-one correspondence) if it is both injective and surjective. That is, f is bijective if, for every the preimage contains exactly one element. The function f is bijective if and only if it admits an inverse function, that is, a function such that and (Contrarily to the case of surjections, this does not require the axiom of choice; the proof is straightforward).
Every function may be factorized as the composition of a surjection followed by an injection, where s is the canonical surjection of X onto f(X) and i is the canonical injection of f(X) into Y. This is the canonical factorization of f.
"One-to-one" and "onto" are terms that were more common in the older English language literature; "injective", "surjective", and "bijective" were originally coined as French words in the second quarter of the 20th century by the Bourbaki group and imported into English. As a word of caution, "a one-to-one function" is one that is injective, while a "one-to-one correspondence" refers to a bijective function. Also, the statement "f maps X onto Y" differs from "f maps X into B", in that the former implies that f is surjective, while the latter makes no assertion about the nature of f. In a complicated reasoning, the one letter difference can easily be missed. Due to the confusing nature of this older terminology, these terms have declined in popularity relative to the Bourbakian terms, which have also the advantage of being more symmetrical.
Restriction and extension
If is a function and S is a subset of X, then the restriction of to S, denoted , is the function from S to Y defined by
for all x in S. Restrictions can be used to define partial inverse functions: if there is a subset S of the domain of a function such that is injective, then the canonical surjection of onto its image is a bijection, and thus has an inverse function from to S. One application is the definition of inverse trigonometric functions. For example, the cosine function is injective when restricted to the interval [0, π]. The image of this restriction is the interval [−1, 1], and thus the restriction has an inverse function from [−1, 1] to [0, π], which is called arccosine and is denoted arccos.
Function restriction may also be used for "gluing" functions together. Let be the decomposition of X as a union of subsets, and suppose that a function is defined on each such that for each pair of indices, the restrictions of and to are equal. Then this defines a unique function such that for all i. This is the way that functions on manifolds are defined.
An extension of a function f is a function g such that f is a restriction of g. A typical use of this concept is the process of analytic continuation, that allows extending functions whose domain is a small part of the complex plane to functions whose domain is almost the whole complex plane.
Here is another classical example of a function extension that is encountered when studying homographies of the real line. A homography is a function such that ad − bc ≠ 0. Its domain is the set of all real numbers different from and its image is the set of all real numbers different from If one extends the real line to the projectively extended real line by including ∞, one may extend h to a bijection from the extended real line to itself by setting and .
In calculus
The idea of function, starting in the 17th century, was fundamental to the new infinitesimal calculus. At that time, only real-valued functions of a real variable were considered, and all functions were assumed to be smooth. But the definition was soon extended to functions of several variables and to functions of a complex variable. In the second half of the 19th century, the mathematically rigorous definition of a function was introduced, and functions with arbitrary domains and codomains were defined.
Functions are now used throughout all areas of mathematics. In introductory calculus, when the word function is used without qualification, it means a real-valued function of a single real variable. The more general definition of a function is usually introduced to second or third year college students with STEM majors, and in their senior year they are introduced to calculus in a larger, more rigorous setting in courses such as real analysis and complex analysis.
Real function
A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval. In this section, these functions are simply called functions.
The functions that are most commonly considered in mathematics and its applications have some regularity, that is they are continuous, differentiable, and even analytic. This regularity insures that these functions can be visualized by their graphs. In this section, all functions are differentiable in some interval.
Functions enjoy pointwise operations, that is, if f and g are functions, their sum, difference and product are functions defined by
The domains of the resulting functions are the intersection of the domains of f and g. The quotient of two functions is defined similarly by
but the domain of the resulting function is obtained by removing the zeros of g from the intersection of the domains of f and g.
The polynomial functions are defined by polynomials, and their domain is the whole set of real numbers. They include constant functions, linear functions and quadratic functions. Rational functions are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid division by zero. The simplest rational function is the function whose graph is a hyperbola, and whose domain is the whole real line except for 0.
The derivative of a real differentiable function is a real function. An antiderivative of a continuous real function is a real function that has the original function as a derivative. For example, the function is continuous, and even differentiable, on the positive real numbers. Thus one antiderivative, which takes the value zero for x = 1, is a differentiable function called the natural logarithm.
A real function f is monotonic in an interval if the sign of does not depend of the choice of x and y in the interval. If the function is differentiable in the interval, it is monotonic if the sign of the derivative is constant in the interval. If a real function f is monotonic in an interval I, it has an inverse function, which is a real function with domain f(I) and image I. This is how inverse trigonometric functions are defined in terms of trigonometric functions, where the trigonometric functions are monotonic. Another example: the natural logarithm is monotonic on the positive real numbers, and its image is the whole real line; therefore it has an inverse function that is a bijection between the real numbers and the positive real numbers. This inverse is the exponential function.
Many other real functions are defined either by the implicit function theorem (the inverse function is a particular instance) or as solutions of differential equations. For example, the sine and the cosine functions are the solutions of the linear differential equation
such that
Vector-valued function
When the elements of the codomain of a function are vectors, the function is said to be a vector-valued function. These functions are particularly useful in applications, for example modeling physical properties. For example, the function that associates to each point of a fluid its velocity vector is a vector-valued function.
Some vector-valued functions are defined on a subset of or other spaces that share geometric or topological properties of , such as manifolds. These vector-valued functions are given the name vector fields.
Function space
In mathematical analysis, and more specifically in functional analysis, a function space is a set of scalar-valued or vector-valued functions, which share a specific property and form a topological vector space. For example, the real smooth functions with a compact support (that is, they are zero outside some compact set) form a function space that is at the basis of the theory of distributions.
Function spaces play a fundamental role in advanced mathematical analysis, by allowing the use of their algebraic and topological properties for studying properties of functions. For example, all theorems of existence and uniqueness of solutions of ordinary or partial differential equations result of the study of function spaces.
Multi-valued functions
Several methods for specifying functions of real or complex variables start from a local definition of the function at a point or on a neighbourhood of a point, and then extend by continuity the function to a much larger domain. Frequently, for a starting point there are several possible starting values for the function.
For example, in defining the square root as the inverse function of the square function, for any positive real number there are two choices for the value of the square root, one of which is positive and denoted and another which is negative and denoted These choices define two continuous functions, both having the nonnegative real numbers as a domain, and having either the nonnegative or the nonpositive real numbers as images. When looking at the graphs of these functions, one can see that, together, they form a single smooth curve. It is therefore often useful to consider these two square root functions as a single function that has two values for positive x, one value for 0 and no value for negative x.
In the preceding example, one choice, the positive square root, is more natural than the other. This is not the case in general. For example, let consider the implicit function that maps y to a root x of (see the figure on the right). For y = 0 one may choose either for x. By the implicit function theorem, each choice defines a function; for the first one, the (maximal) domain is the interval [−2, 2] and the image is [−1, 1]; for the second one, the domain is [−2, ∞) and the image is [1, ∞); for the last one, the domain is (−∞, 2] and the image is (−∞, −1]. As the three graphs together form a smooth curve, and there is no reason for preferring one choice, these three functions are often considered as a single multi-valued function of y that has three values for −2 < y < 2, and only one value for y ≤ −2 and y ≥ −2.
Usefulness of the concept of multi-valued functions is clearer when considering complex functions, typically analytic functions. The domain to which a complex function may be extended by analytic continuation generally consists of almost the whole complex plane. However, when extending the domain through two different paths, one often gets different values. For example, when extending the domain of the square root function, along a path of complex numbers with positive imaginary parts, one gets i for the square root of −1; while, when extending through complex numbers with negative imaginary parts, one gets −i. There are generally two ways of solving the problem. One may define a function that is not continuous along some curve, called a branch cut. Such a function is called the principal value of the function. The other way is to consider that one has a multi-valued function, which is analytic everywhere except for isolated singularities, but whose value may "jump" if one follows a closed loop around a singularity. This jump is called the monodromy.
In the foundations of mathematics
The definition of a function that is given in this article requires the concept of set, since the domain and the codomain of a function must be a set. This is not a problem in usual mathematics, as it is generally not difficult to consider only functions whose domain and codomain are sets, which are well defined, even if the domain is not explicitly defined. However, it is sometimes useful to consider more general functions.
For example, the singleton set may be considered as a function Its domain would include all sets, and therefore would not be a set. In usual mathematics, one avoids this kind of problem by specifying a domain, which means that one has many singleton functions. However, when establishing foundations of mathematics, one may have to use functions whose domain, codomain or both are not specified, and some authors, often logicians, give precise definitions for these weakly specified functions.
These generalized functions may be critical in the development of a formalization of the foundations of mathematics. For example, Von Neumann–Bernays–Gödel set theory, is an extension of the set theory in which the collection of all sets is a class. This theory includes the replacement axiom, which may be stated as: If X is a set and F is a function, then F[X] is a set.
In alternative formulations of the foundations of mathematics using type theory rather than set theory, functions are taken as primitive notions rather than defined from other kinds of object. They are the inhabitants of function types, and may be constructed using expressions in the lambda calculus.
In computer science
In computer programming, a function is, in general, a piece of a computer program, which implements the abstract concept of function. That is, it is a program unit that produces an output for each input. However, in many programming languages every subroutine is called a function, even when there is no output, and when the functionality consists simply of modifying some data in the computer memory.
Functional programming is the programming paradigm consisting of building programs by using only subroutines that behave like mathematical functions. For example, if_then_else
is a function that takes three functions as arguments, and, depending on the result of the first function (true or false), returns the result of either the second or the third function. An important advantage of functional programming is that it makes easier program proofs, as being based on a well founded theory, the lambda calculus (see below).
Except for computer-language terminology, "function" has the usual mathematical meaning in computer science. In this area, a property of major interest is the computability of a function. For giving a precise meaning to this concept, and to the related concept of algorithm, several models of computation have been introduced, the old ones being general recursive functions, lambda calculus and Turing machine. The fundamental theorem of computability theory is that these three models of computation define the same set of computable functions, and that all the other models of computation that have ever been proposed define the same set of computable functions or a smaller one. The Church–Turing thesis is the claim that every philosophically acceptable definition of a computable function defines also the same functions.
General recursive functions are partial functions from integers to integers that can be defined from
- constant functions,
- successor, and
- projection functions
via the operators
- composition,
- primitive recursion, and
- minimization.
Although defined only for functions from integers to integers, they can model any computable function as a consequence of the following properties:
- a computation is the manipulation of finite sequences of symbols (digits of numbers, formulas, ...),
- every sequence of symbols may be coded as a sequence of bits,
- a bit sequence can be interpreted as the binary representation of an integer.
Lambda calculus is a theory that defines computable functions without using set theory, and is the theoretical background of functional programming. It consists of terms that are either variables, function definitions (𝜆-terms), or applications of functions to terms. Terms are manipulated through some rules, (the α-equivalence, the β-reduction, and the η-conversion), which are the axioms of the theory and may be interpreted as rules of computation.
In its original form, lambda calculus does not include the concepts of domain and codomain of a function. Roughly speaking, they have been introduced in the theory under the name of type in typed lambda calculus. Most kinds of typed lambda calculi can define fewer functions than untyped lambda calculus.
See also
Subpages
- History of the function concept
- List of types of functions
- List of functions
- Function fitting
- Implicit function
Generalizations
- Higher-order function
- Homomorphism
- Morphism
- Microfunction
- Distribution
- Functor
Related topics
- Associative array
- Closed-form expression
- Elementary function
- Functional
- Functional decomposition
- Functional predicate
- Functional programming
- Parametric equation
- Set function
- Simple function
Notes
- This definition of "graph" refers to a set of pairs of objects. Graphs, in the sense of diagrams, are most applicable to functions from the real numbers to themselves. All functions can be described by sets of pairs but it may not be practical to construct a diagram for functions between other sets (such as sets of matrices).
- The true domain of such a function is often called the domain of definition of the function.
- n may also be 1, thus subsuming functions as defined above. For n = 0, each constant is a special case of a multivariate function, too.
- Here "elementary" has not exactly its common sense: although most functions that are encountered in elementary courses of mathematics are elementary in this sense, some elementary functions are not elementary for the common sense, for example, those that involve roots of polynomials of high degree.
- By definition, the graph of the empty function to X is a subset of the Cartesian product ∅ × X, and this product is empty.
- The axiom of choice is not needed here, as the choice is done in a single set.
References
- Halmos 1970, p. 30; the words map, mapping, transformation, correspondence, and operator are sometimes used synonymously.
- Halmos 1970
- "Mapping". Encyclopedia of Mathematics. EMS Press. 2001 [1994].
- "function | Definition, Types, Examples, & Facts". Encyclopedia Britannica. Retrieved 2020-08-17.
- Spivak 2008, p. 39.
- Kudryavtsev, L.D. (2001) [1994]. "Function". Encyclopedia of Mathematics. EMS Press.
- Taalman, Laura; Kohn, Peter (2014). Calculus. New York City: W. H. Freeman and Company. p. 3. ISBN 978-1-4292-4186-1. LCCN 2012947365. OCLC 856545590. OL 27544563M.
- Trench, William F. (2013) [2003]. Introduction to Real Analysis (2.04th ed.). Pearson Education (originally; self-republished by the author). pp. 30–32. ISBN 0-13-045786-8. LCCN 2002032369. OCLC 953799815. Zbl 1204.00023.
- Thomson, Brian S.; Bruckner, Judith B.; Bruckner, Andrew M. (2008) [2001]. Elementary Real Analysis (PDF) (2nd ed.). Prentice Hall (originally; 2nd ed. self-republished by the authors). pp. A-4 – A-5. ISBN 978-1-4348-4367-8. OCLC 1105855173. OL 31844948M. Zbl 0872.26001.
- Halmos, Paul R. (1974). Naive Set Theory. Springer. pp. 30–33.
- Larson, Ron; Edwards, Bruce H. (2010). Calculus of a Single Variable. Cengage Learning. p. 19. ISBN 978-0-538-73552-0.
- Weisstein, Eric W. "Map". mathworld.wolfram.com. Retrieved 2019-06-12.
- Lang, Serge (1987). "III §1. Mappings". Linear Algebra (3rd ed.). Springer. p. 43. ISBN 978-0-387-96412-6.
A function is a special type of mapping, namely it is a mapping from a set into the set of numbers, i.e. into, R, or C or into a field K.
- Apostol, T.M. (1981). Mathematical Analysis (2nd ed.). Addison-Wesley. p. 35. ISBN 978-0-201-00288-1. OCLC 928947543.
- James, Robert C.; James, Glenn (1992). Mathematics dictionary (5th ed.). Van Nostrand Reinhold. p. 202. ISBN 0-442-00741-8. OCLC 25409557.
- James & James 1992, p. 48
- Gowers, Timothy; Barrow-Green, June; Leader, Imre, eds. (2008). The Princeton Companion to Mathematics. Princeton, New Jersey: Princeton University Press. p. 11. doi:10.1515/9781400830398. ISBN 978-0-691-11880-2. JSTOR j.ctt7sd01. LCCN 2008020450. MR 2467561. OCLC 227205932. OL 19327100M. Zbl 1242.00016.
- Quantities and Units - Part 2: Mathematical signs and symbols to be used in the natural sciences and technology, p. 15. ISO 80000-2 (ISO/IEC 2009-12-01)
- Ivanova, O.A. (2001) [1994]. "Injection". Encyclopedia of Mathematics. EMS Press.
- Ivanova, O.A. (2001) [1994]. "Surjection". Encyclopedia of Mathematics. EMS Press.
- Ivanova, O.A. (2001) [1994]. "Bijection". Encyclopedia of Mathematics. EMS Press.
- Hartnett, Kevin (9 November 2020). "Inside the Secret Math Society Known Simply as Nicolas Bourbaki". Quanta Magazine. Retrieved 2024-06-05.
- Gödel 1940, p. 16; Jech 2003, p. 11; Cunningham 2016, p. 57
- Klev, Ansten (2019). "A comparison of type theory with set theory". In Centrone, Stefania; Kant, Deborah; Sarikaya, Deniz (eds.). Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Synthese Library. Vol. 407. Cham: Springer. pp. 271–292. doi:10.1007/978-3-030-15655-8_12. ISBN 978-3-030-15654-1. MR 4352345.
Sources
- Bartle, Robert (1976). The Elements of Real Analysis (2nd ed.). Wiley. ISBN 978-0-471-05465-8. OCLC 465115030.
- Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics. Springer. ISBN 978-1-4419-7126-5.
- Cunningham, Daniel W. (2016). Set theory: A First Course. Cambridge University Press. ISBN 978-1-107-12032-7.
- Gödel, Kurt (1940). The Consistency of the Continuum Hypothesis. Princeton University Press. ISBN 978-0-691-07927-1.
- Halmos, Paul R. (1970). Naive Set Theory. Springer-Verlag. ISBN 978-0-387-90092-6.
- Jech, Thomas (2003). Set theory (3rd ed.). Springer-Verlag. ISBN 978-3-540-44085-7.
- Spivak, Michael (2008). Calculus (4th ed.). Publish or Perish. ISBN 978-0-914098-91-1.
Further reading
- Anton, Howard (1980). Calculus with Analytical Geometry. Wiley. ISBN 978-0-471-03248-9.
- Bartle, Robert G. (1976). The Elements of Real Analysis (2nd ed.). Wiley. ISBN 978-0-471-05464-1.
- Dubinsky, Ed; Harel, Guershon (1992). The Concept of Function: Aspects of Epistemology and Pedagogy. Mathematical Association of America. ISBN 978-0-88385-081-7.
- Hammack, Richard (2009). "12. Functions" (PDF). Book of Proof. Virginia Commonwealth University. Retrieved 2012-08-01.
- Husch, Lawrence S. (2001). Visual Calculus. University of Tennessee. Retrieved 2007-09-27.
- Katz, Robert (1964). Axiomatic Analysis. D. C. Heath and Company.
- Kleiner, Israel (1989). "Evolution of the Function Concept: A Brief Survey". The College Mathematics Journal. 20 (4): 282–300. CiteSeerX 10.1.1.113.6352. doi:10.2307/2686848. JSTOR 2686848.
- Lützen, Jesper (2003). "Between rigor and applications: Developments in the concept of function in mathematical analysis". In Porter, Roy (ed.). The Cambridge History of Science: The modern physical and mathematical sciences. Cambridge University Press. ISBN 978-0-521-57199-9. An approachable and diverting historical presentation.
- Malik, M. A. (1980). "Historical and pedagogical aspects of the definition of function". International Journal of Mathematical Education in Science and Technology. 11 (4): 489–492. doi:10.1080/0020739800110404.
- Reichenbach, Hans (1947). Elements of Symbolic Logic. Dover. ISBN 0-486-24004-5.
- Ruthing, D. (1984). "Old Intelligencer: Some definitions of the concept of function from Bernoulli, Joh. to Bourbaki, N.". Mathematical Intelligencer. 6 (4): 71–78. doi:10.1007/BF03026743. S2CID 189883712.
- Thomas, George B.; Finney, Ross L. (1995). Calculus and Analytic Geometry (9th ed.). Addison-Wesley. ISBN 978-0-201-53174-9.
External links
In mathematics a function from a set X to a set Y assigns to each element of X exactly one element of Y The set X is called the domain of the function and the set Y is called the codomain of the function Functions were originally the idealization of how a varying quantity depends on another quantity For example the position of a planet is a function of time Historically the concept was elaborated with the infinitesimal calculus at the end of the 17th century and until the 19th century the functions that were considered were differentiable that is they had a high degree of regularity The concept of a function was formalized at the end of the 19th century in terms of set theory and this greatly increased the possible applications of the concept A function is often denoted by a letter such as f g or h The value of a function f at an element x of its domain that is the element of the codomain that is associated with x is denoted by f x for example the value of f at x 4 is denoted by f 4 Commonly a specific function is defined by means of an expression depending on x such as f x x2 1 displaystyle f x x 2 1 in this case some computation called function evaluation may be needed for deducing the value of the function at a particular value for example if f x x2 1 displaystyle f x x 2 1 then f 4 42 1 17 displaystyle f 4 4 2 1 17 Given its domain and its codomain a function is uniquely represented by the set of all pairs x f x called the graph of the function a popular means of illustrating the function When the domain and the codomain are sets of real numbers each such pair may be thought of as the Cartesian coordinates of a point in the plane Functions are widely used in science engineering and in most fields of mathematics It has been said that functions are the central objects of investigation in most fields of mathematics The concept of a function has evolved significantly over centuries from its informal origins in ancient mathematics to its formalization in the 19th century See History of the function concept for details DefinitionSchematic depiction of a function described metaphorically as a machine or black box that for each input yields a corresponding outputThe red curve is the graph of a function because any vertical line has exactly one crossing point with the curve A function f from a set X to a set Y is an assignment of one element of Y to each element of X The set X is called the domain of the function and the set Y is called the codomain of the function If the element y in Y is assigned to x in X by the function f one says that f maps x to y and this is commonly written y f x displaystyle y f x In this notation x is the argument or variable of the function A specific element x of X is a value of the variable and the corresponding element of Y is the value of the function at x or the image of x under the function A function f its domain X and its codomain Y are often specified by the notation f X Y displaystyle f X to Y One may write x y displaystyle x mapsto y instead of y f x displaystyle y f x where the symbol displaystyle mapsto read maps to is used to specify where a particular element x in the domain is mapped to by f This allows the definition of a function without naming For example the square function is the function x x2 displaystyle x mapsto x 2 The domain and codomain are not always explicitly given when a function is defined In particular it is common that one might only know without some possibly difficult computation that the domain of a specific function is contained in a larger set For example if f R R displaystyle f mathbb R to mathbb R is a real function the determination of the domain of the function x 1 f x displaystyle x mapsto 1 f x requires knowing the zeros of f This is one of the reasons for which in mathematical analysis a function from X to Y may refer to a function having a proper subset of X as a domain For example a function from the reals to the reals may refer to a real valued function of a real variable whose domain is a proper subset of the real numbers typically a subset that contains a non empty open interval Such a function is then called a partial function The range or image of a function is the set of the images of all elements in the domain A function f on a set S means a function from the domain S without specifying a codomain However some authors use it as shorthand for saying that the function is f S S Formal definition Diagram of a functionDiagram of a relation that is not a function One reason is that 2 is the first element in more than one ordered pair Another reason is that neither 3 nor 4 are the first element input of any ordered pair therein The above definition of a function is essentially that of the founders of calculus Leibniz Newton and Euler However it cannot be formalized since there is no mathematical definition of an assignment It is only at the end of the 19th century that the first formal definition of a function could be provided in terms of set theory This set theoretic definition is based on the fact that a function establishes a relation between the elements of the domain and some possibly all elements of the codomain Mathematically a binary relation between two sets X and Y is a subset of the set of all ordered pairs x y displaystyle x y such that x X displaystyle x in X and y Y displaystyle y in Y The set of all these pairs is called the Cartesian product of X and Y and denoted X Y displaystyle X times Y Thus the above definition may be formalized as follows A function with domain X and codomain Y is a binary relation R between X and Y that satisfies the two following conditions For every x displaystyle x in X displaystyle X there exists y displaystyle y in Y displaystyle Y such that x y R displaystyle x y in R If x y R displaystyle x y in R and x z R displaystyle x z in R then y z displaystyle y z This definition may be rewritten more formally without referring explicitly to the concept of a relation but using more notation including set builder notation A function is formed by three sets the domain X displaystyle X the codomain Y displaystyle Y and the graph R displaystyle R that satisfy the three following conditions R x y x X y Y displaystyle R subseteq x y mid x in X y in Y x X y Y x y R displaystyle forall x in X exists y in Y left x y right in R qquad x y R x z R y z displaystyle x y in R land x z in R implies y z qquad Partial functions Partial functions are defined similarly to ordinary functions with the total condition removed That is a partial function from X to Y is a binary relation R between X and Y such that for every x X displaystyle x in X there is at most one y in Y such that x y R displaystyle x y in R Using functional notation this means that given x X displaystyle x in X either f x displaystyle f x is in Y or it is undefined The set of the elements of X such that f x displaystyle f x is defined and belongs to Y is called the domain of definition of the function A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function If the domain of definition equals X one often says that the partial function is a total function In several areas of mathematics the term function refers to partial functions rather than to ordinary functions This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain In calculus a real valued function of a real variable or real function is a partial function from the set R displaystyle mathbb R of the real numbers to itself Given a real function f x f x displaystyle f x mapsto f x its multiplicative inverse x 1 f x displaystyle x mapsto 1 f x is also a real function The determination of the domain of definition of a multiplicative inverse of a partial function amounts to compute the zeros of the function the values where the function is defined but not its multiplicative inverse Similarly a function of a complex variable is generally a partial function with a domain of definition included in the set C displaystyle mathbb C of the complex numbers The difficulty of determining the domain of definition of a complex function is illustrated by the multiplicative inverse of the Riemann zeta function the determination of the domain of definition of the function z 1 z z displaystyle z mapsto 1 zeta z is more or less equivalent to the proof or disproof of one of the major open problems in mathematics the Riemann hypothesis In computability theory a general recursive function is a partial function from the integers to the integers whose values can be computed by an algorithm roughly speaking The domain of definition of such a function is the set of inputs for which the algorithm does not run forever A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition see Halting problem Multivariate functions A binary operation is a typical example of a bivariate function which assigns to each pair x y displaystyle x y the result x y displaystyle x circ y A multivariate function multivariable function or function of several variables is a function that depends on several arguments Such functions are commonly encountered For example the position of a car on a road is a function of the time travelled and its average speed Formally a function of n variables is a function whose domain is a set of n tuples For example multiplication of integers is a function of two variables or bivariate function whose domain is the set of all ordered pairs 2 tuples of integers and whose codomain is the set of integers The same is true for every binary operation Commonly an n tuple is denoted enclosed between parentheses such as in 1 2 n displaystyle 1 2 ldots n When using functional notation one usually omits the parentheses surrounding tuples writing f x1 xn displaystyle f x 1 ldots x n instead of f x1 xn displaystyle f x 1 ldots x n Given n sets X1 Xn displaystyle X 1 ldots X n the set of all n tuples x1 xn displaystyle x 1 ldots x n such that x1 X1 xn Xn displaystyle x 1 in X 1 ldots x n in X n is called the Cartesian product of X1 Xn displaystyle X 1 ldots X n and denoted X1 Xn displaystyle X 1 times cdots times X n Therefore a multivariate function is a function that has a Cartesian product or a proper subset of a Cartesian product as a domain f U Y displaystyle f U to Y where the domain U has the form U X1 Xn displaystyle U subseteq X 1 times cdots times X n If all the Xi displaystyle X i are equal to the set R displaystyle mathbb R of the real numbers or to the set C displaystyle mathbb C of the complex numbers one talks respectively of a function of several real variables or of a function of several complex variables NotationThere are various standard ways for denoting functions The most commonly used notation is functional notation which is the first notation described below Functional notation The functional notation requires that a name is given to the function which in the case of a unspecified function is often the letter f Then the application of the function to an argument is denoted by its name followed by its argument or in the case of a multivariate functions its arguments enclosed between parentheses such as in f x sin 3 orf x2 1 displaystyle f x quad sin 3 quad text or quad f x 2 1 The argument between the parentheses may be a variable often x that represents an arbitrary element of the domain of the function a specific element of the domain 3 in the above example or an expression that can be evaluated to an element of the domain x2 1 displaystyle x 2 1 in the above example The use of a unspecified variable between parentheses is useful for defining a function explicitly such as in let f x sin x2 1 displaystyle f x sin x 2 1 When the symbol denoting the function consists of several characters and no ambiguity may arise the parentheses of functional notation might be omitted For example it is common to write sin x instead of sin x Functional notation was first used by Leonhard Euler in 1734 Some widely used functions are represented by a symbol consisting of several letters usually two or three generally an abbreviation of their name In this case a roman type is customarily used instead such as sin for the sine function in contrast to italic font for single letter symbols The functional notation is often used colloquially for referring to a function and simultaneously naming its argument such as in let f x displaystyle f x be a function This is an abuse of notation that is useful for a simpler formulation Arrow notation Arrow notation defines the rule of a function inline without requiring a name to be given to the function It uses the arrow symbol pronounced maps to For example x x 1 displaystyle x mapsto x 1 is the function which takes a real number as input and outputs that number plus 1 Again a domain and codomain of R displaystyle mathbb R is implied The domain and codomain can also be explicitly stated for example sqr Z Zx x2 displaystyle begin aligned operatorname sqr colon mathbb Z amp to mathbb Z x amp mapsto x 2 end aligned This defines a function sqr from the integers to the integers that returns the square of its input As a common application of the arrow notation suppose f X X Y x t f x t displaystyle f X times X to Y x t mapsto f x t is a function in two variables and we want to refer to a partially applied function X Y displaystyle X to Y produced by fixing the second argument to the value t0 without introducing a new function name The map in question could be denoted x f x t0 displaystyle x mapsto f x t 0 using the arrow notation The expression x f x t0 displaystyle x mapsto f x t 0 read the map taking x to f of x comma t nought represents this new function with just one argument whereas the expression f x0 t0 refers to the value of the function f at the point x0 t0 Index notation Index notation may be used instead of functional notation That is instead of writing f x one writes fx displaystyle f x This is typically the case for functions whose domain is the set of the natural numbers Such a function is called a sequence and in this case the element fn displaystyle f n is called the n th element of the sequence The index notation can also be used for distinguishing some variables called parameters from the true variables In fact parameters are specific variables that are considered as being fixed during the study of a problem For example the map x f x t displaystyle x mapsto f x t see above would be denoted ft displaystyle f t using index notation if we define the collection of maps ft displaystyle f t by the formula ft x f x t displaystyle f t x f x t for all x t X displaystyle x t in X Dot notation In the notation x f x displaystyle x mapsto f x the symbol x does not represent any value it is simply a placeholder meaning that if x is replaced by any value on the left of the arrow it should be replaced by the same value on the right of the arrow Therefore x may be replaced by any symbol often an interpunct This may be useful for distinguishing the function f from its value f x at x For example a 2 displaystyle a cdot 2 may stand for the function x ax2 displaystyle x mapsto ax 2 and a f u du textstyle int a cdot f u du may stand for a function defined by an integral with variable upper bound x axf u du textstyle x mapsto int a x f u du Specialized notations There are other specialized notations for functions in sub disciplines of mathematics For example in linear algebra and functional analysis linear forms and the vectors they act upon are denoted using a dual pair to show the underlying duality This is similar to the use of bra ket notation in quantum mechanics In logic and the theory of computation the function notation of lambda calculus is used to explicitly express the basic notions of function abstraction and application In category theory and homological algebra networks of functions are described in terms of how they and their compositions commute with each other using commutative diagrams that extend and generalize the arrow notation for functions described above Functions of more than one variable In some cases the argument of a function may be an ordered pair of elements taken from some set or sets For example a function f can be defined as mapping any pair of real numbers x y displaystyle x y to the sum of their squares x2 y2 displaystyle x 2 y 2 Such a function is commonly written as f x y x2 y2 displaystyle f x y x 2 y 2 and referred to as a function of two variables Likewise one can have a function of three or more variables with notations such as f w x y displaystyle f w x y f w x y z displaystyle f w x y z Other termsTerm Distinction from function Map Mapping None the terms are synonymous A map can have any set as its codomain while in some contexts typically in older books the codomain of a function is specifically the set of real or complex numbers Alternatively a map is associated with a special structure e g by explicitly specifying a structured codomain in its definition For example a linear map Homomorphism A function between two structures of the same type that preserves the operations of the structure e g a group homomorphism Morphism A generalisation of homomorphisms to any category even when the objects of the category are not sets for example a group defines a category with only one object which has the elements of the group as morphisms see Category mathematics Examples for this example and other similar ones A function may also be called a map or a mapping but some authors make a distinction between the term map and function For example the term map is often reserved for a function with some sort of special structure e g maps of manifolds In particular map may be used in place of homomorphism for the sake of succinctness e g linear map or map from G to H instead of group homomorphism from G to H Some authors reserve the word mapping for the case where the structure of the codomain belongs explicitly to the definition of the function Some authors such as Serge Lang use function only to refer to maps for which the codomain is a subset of the real or complex numbers and use the term mapping for more general functions In the theory of dynamical systems a map denotes an evolution function used to create discrete dynamical systems See also Poincare map Whichever definition of map is used related terms like domain codomain injective continuous have the same meaning as for a function Specifying a functionGiven a function f displaystyle f by definition to each element x displaystyle x of the domain of the function f displaystyle f there is a unique element associated to it the value f x displaystyle f x of f displaystyle f at x displaystyle x There are several ways to specify or describe how x displaystyle x is related to f x displaystyle f x both explicitly and implicitly Sometimes a theorem or an axiom asserts the existence of a function having some properties without describing it more precisely Often the specification or description is referred to as the definition of the function f displaystyle f By listing function values On a finite set a function may be defined by listing the elements of the codomain that are associated to the elements of the domain For example if A 1 2 3 displaystyle A 1 2 3 then one can define a function f A R displaystyle f A to mathbb R by f 1 2 f 2 3 f 3 4 displaystyle f 1 2 f 2 3 f 3 4 By a formula Functions are often defined by an expression that describes a combination of arithmetic operations and previously defined functions such a formula allows computing the value of the function from the value of any element of the domain For example in the above example f displaystyle f can be defined by the formula f n n 1 displaystyle f n n 1 for n 1 2 3 displaystyle n in 1 2 3 When a function is defined this way the determination of its domain is sometimes difficult If the formula that defines the function contains divisions the values of the variable for which a denominator is zero must be excluded from the domain thus for a complicated function the determination of the domain passes through the computation of the zeros of auxiliary functions Similarly if square roots occur in the definition of a function from R displaystyle mathbb R to R displaystyle mathbb R the domain is included in the set of the values of the variable for which the arguments of the square roots are nonnegative For example f x 1 x2 displaystyle f x sqrt 1 x 2 defines a function f R R displaystyle f mathbb R to mathbb R whose domain is R displaystyle mathbb R because 1 x2 displaystyle 1 x 2 is always positive if x is a real number On the other hand f x 1 x2 displaystyle f x sqrt 1 x 2 defines a function from the reals to the reals whose domain is reduced to the interval 1 1 In old texts such a domain was called the domain of definition of the function Functions can be classified by the nature of formulas that define them A quadratic function is a function that may be written f x ax2 bx c displaystyle f x ax 2 bx c where a b c are constants More generally a polynomial function is a function that can be defined by a formula involving only additions subtractions multiplications and exponentiation to nonnegative integer powers For example f x x3 3x 1 displaystyle f x x 3 3x 1 and f x x 1 x3 1 2x2 1 displaystyle f x x 1 x 3 1 2x 2 1 are polynomial functions of x displaystyle x A rational function is the same with divisions also allowed such as f x x 1x 1 displaystyle f x frac x 1 x 1 and f x 1x 1 3x 2x 1 displaystyle f x frac 1 x 1 frac 3 x frac 2 x 1 An algebraic function is the same with n th roots and roots of polynomials also allowed An elementary function is the same with logarithms and exponential functions allowed Inverse and implicit functions A function f X Y displaystyle f X to Y with domain X and codomain Y is bijective if for every y in Y there is one and only one element x in X such that y f x In this case the inverse function of f is the function f 1 Y X displaystyle f 1 Y to X that maps y Y displaystyle y in Y to the element x X displaystyle x in X such that y f x For example the natural logarithm is a bijective function from the positive real numbers to the real numbers It thus has an inverse called the exponential function that maps the real numbers onto the positive numbers If a function f X Y displaystyle f X to Y is not bijective it may occur that one can select subsets E X displaystyle E subseteq X and F Y displaystyle F subseteq Y such that the restriction of f to E is a bijection from E to F and has thus an inverse The inverse trigonometric functions are defined this way For example the cosine function induces by restriction a bijection from the interval 0 p onto the interval 1 1 and its inverse function called arccosine maps 1 1 onto 0 p The other inverse trigonometric functions are defined similarly More generally given a binary relation R between two sets X and Y let E be a subset of X such that for every x E displaystyle x in E there is some y Y displaystyle y in Y such that x R y If one has a criterion allowing selecting such a y for every x E displaystyle x in E this defines a function f E Y displaystyle f E to Y called an implicit function because it is implicitly defined by the relation R For example the equation of the unit circle x2 y2 1 displaystyle x 2 y 2 1 defines a relation on real numbers If 1 lt x lt 1 there are two possible values of y one positive and one negative For x 1 these two values become both equal to 0 Otherwise there is no possible value of y This means that the equation defines two implicit functions with domain 1 1 and respective codomains 0 and 0 In this example the equation can be solved in y giving y 1 x2 displaystyle y pm sqrt 1 x 2 but in more complicated examples this is impossible For example the relation y5 y x 0 displaystyle y 5 y x 0 defines y as an implicit function of x called the Bring radical which has R displaystyle mathbb R as domain and range The Bring radical cannot be expressed in terms of the four arithmetic operations and n th roots The implicit function theorem provides mild differentiability conditions for existence and uniqueness of an implicit function in the neighborhood of a point Using differential calculus Many functions can be defined as the antiderivative of another function This is the case of the natural logarithm which is the antiderivative of 1 x that is 0 for x 1 Another common example is the error function More generally many functions including most special functions can be defined as solutions of differential equations The simplest example is probably the exponential function which can be defined as the unique function that is equal to its derivative and takes the value 1 for x 0 Power series can be used to define functions on the domain in which they converge For example the exponential function is given by ex n 0 xnn textstyle e x sum n 0 infty x n over n However as the coefficients of a series are quite arbitrary a function that is the sum of a convergent series is generally defined otherwise and the sequence of the coefficients is the result of some computation based on another definition Then the power series can be used to enlarge the domain of the function Typically if a function for a real variable is the sum of its Taylor series in some interval this power series allows immediately enlarging the domain to a subset of the complex numbers the disc of convergence of the series Then analytic continuation allows enlarging further the domain for including almost the whole complex plane This process is the method that is generally used for defining the logarithm the exponential and the trigonometric functions of a complex number By recurrence Functions whose domain are the nonnegative integers known as sequences are sometimes defined by recurrence relations The factorial function on the nonnegative integers n n displaystyle n mapsto n is a basic example as it can be defined by the recurrence relation n n n 1 forn gt 0 displaystyle n n n 1 quad text for quad n gt 0 and the initial condition 0 1 displaystyle 0 1 Representing a functionA graph is commonly used to give an intuitive picture of a function As an example of how a graph helps to understand a function it is easy to see from its graph whether a function is increasing or decreasing Some functions may also be represented by bar charts Graphs and plots The function mapping each year to its US motor vehicle death count shown as a line chartThe same function shown as a bar chart Given a function f X Y displaystyle f X to Y its graph is formally the set G x f x x X displaystyle G x f x mid x in X In the frequent case where X and Y are subsets of the real numbers or may be identified with such subsets e g intervals an element x y G displaystyle x y in G may be identified with a point having coordinates x y in a 2 dimensional coordinate system e g the Cartesian plane Parts of this may create a plot that represents parts of the function The use of plots is so ubiquitous that they too are called the graph of the function Graphic representations of functions are also possible in other coordinate systems For example the graph of the square function x x2 displaystyle x mapsto x 2 consisting of all points with coordinates x x2 displaystyle x x 2 for x R displaystyle x in mathbb R yields when depicted in Cartesian coordinates the well known parabola If the same quadratic function x x2 displaystyle x mapsto x 2 with the same formal graph consisting of pairs of numbers is plotted instead in polar coordinates r 8 x x2 displaystyle r theta x x 2 the plot obtained is Fermat s spiral Tables A function can be represented as a table of values If the domain of a function is finite then the function can be completely specified in this way For example the multiplication function f 1 5 2 R displaystyle f 1 ldots 5 2 to mathbb R defined as f x y xy displaystyle f x y xy can be represented by the familiar multiplication table yx 1 2 3 4 51 1 2 3 4 52 2 4 6 8 103 3 6 9 12 154 4 8 12 16 205 5 10 15 20 25 On the other hand if a function s domain is continuous a table can give the values of the function at specific values of the domain If an intermediate value is needed interpolation can be used to estimate the value of the function For example a portion of a table for the sine function might be given as follows with values rounded to 6 decimal places x sin x1 289 0 9605571 290 0 9608351 291 0 9611121 292 0 9613871 293 0 961662 Before the advent of handheld calculators and personal computers such tables were often compiled and published for functions such as logarithms and trigonometric functions Bar chart A bar chart can represent a function whose domain is a finite set the natural numbers or the integers In this case an element x of the domain is represented by an interval of the x axis and the corresponding value of the function f x is represented by a rectangle whose base is the interval corresponding to x and whose height is f x possibly negative in which case the bar extends below the x axis General propertiesThis section describes general properties of functions that are independent of specific properties of the domain and the codomain Standard functions There are a number of standard functions that occur frequently For every set X there is a unique function called the empty function or empty map from the empty set to X The graph of an empty function is the empty set The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements Under the usual set theoretic definition of a function as an ordered triplet or equivalent ones there is exactly one empty function for each set thus the empty function X displaystyle varnothing to X is not equal to Y displaystyle varnothing to Y if and only if X Y displaystyle X neq Y although their graphs are both the empty set For every set X and every singleton set s there is a unique function from X to s which maps every element of X to s This is a surjection see below unless X is the empty set Given a function f X Y displaystyle f X to Y the canonical surjection of f onto its image f X f x x X displaystyle f X f x mid x in X is the function from X to f X that maps x to f x For every subset A of a set X the inclusion map of A into X is the injective see below function that maps every element of A to itself The identity function on a set X often denoted by idX is the inclusion of X into itself Function composition Given two functions f X Y displaystyle f X to Y and g Y Z displaystyle g Y to Z such that the domain of g is the codomain of f their composition is the function g f X Z displaystyle g circ f X rightarrow Z defined by g f x g f x displaystyle g circ f x g f x That is the value of g f displaystyle g circ f is obtained by first applying f to x to obtain y f x and then applying g to the result y to obtain g y g f x In this notation the function that is applied first is always written on the right The composition g f displaystyle g circ f is an operation on functions that is defined only if the codomain of the first function is the domain of the second one Even when both g f displaystyle g circ f and f g displaystyle f circ g satisfy these conditions the composition is not necessarily commutative that is the functions g f displaystyle g circ f and f g displaystyle f circ g need not be equal but may deliver different values for the same argument For example let f x x2 and g x x 1 then g f x x2 1 displaystyle g f x x 2 1 and f g x x 1 2 displaystyle f g x x 1 2 agree just for x 0 displaystyle x 0 The function composition is associative in the sense that if one of h g f displaystyle h circ g circ f and h g f displaystyle h circ g circ f is defined then the other is also defined and they are equal that is h g f h g f displaystyle h circ g circ f h circ g circ f Therefore it is usual to just write h g f displaystyle h circ g circ f The identity functions idX displaystyle operatorname id X and idY displaystyle operatorname id Y are respectively a right identity and a left identity for functions from X to Y That is if f is a function with domain X and codomain Y one has f idX idY f f displaystyle f circ operatorname id X operatorname id Y circ f f A composite function g f x can be visualized as the combination of two machines A simple example of a function composition Another composition In this example g f c Image and preimage Let f X Y displaystyle f X to Y The image under f of an element x of the domain X is f x If A is any subset of X then the image of A under f denoted f A is the subset of the codomain Y consisting of all images of elements of A that is f A f x x A displaystyle f A f x mid x in A The image of f is the image of the whole domain that is f X It is also called the range of f although the term range may also refer to the codomain On the other hand the inverse image or preimage under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y In symbols the preimage of y is denoted by f 1 y displaystyle f 1 y and is given by the equation f 1 y x X f x y displaystyle f 1 y x in X mid f x y Likewise the preimage of a subset B of the codomain Y is the set of the preimages of the elements of B that is it is the subset of the domain X consisting of all elements of X whose images belong to B It is denoted by f 1 B displaystyle f 1 B and is given by the equation f 1 B x X f x B displaystyle f 1 B x in X mid f x in B For example the preimage of 4 9 displaystyle 4 9 under the square function is the set 3 2 2 3 displaystyle 3 2 2 3 By definition of a function the image of an element x of the domain is always a single element of the codomain However the preimage f 1 y displaystyle f 1 y of an element y of the codomain may be empty or contain any number of elements For example if f is the function from the integers to themselves that maps every integer to 0 then f 1 0 Z displaystyle f 1 0 mathbb Z If f X Y displaystyle f X to Y is a function A and B are subsets of X and C and D are subsets of Y then one has the following properties A B f A f B displaystyle A subseteq B Longrightarrow f A subseteq f B C D f 1 C f 1 D displaystyle C subseteq D Longrightarrow f 1 C subseteq f 1 D A f 1 f A displaystyle A subseteq f 1 f A C f f 1 C displaystyle C supseteq f f 1 C f f 1 f A f A displaystyle f f 1 f A f A f 1 f f 1 C f 1 C displaystyle f 1 f f 1 C f 1 C The preimage by f of an element y of the codomain is sometimes called in some contexts the fiber of y under f If a function f has an inverse see below this inverse is denoted f 1 displaystyle f 1 In this case f 1 C displaystyle f 1 C may denote either the image by f 1 displaystyle f 1 or the preimage by f of C This is not a problem as these sets are equal The notation f A displaystyle f A and f 1 C displaystyle f 1 C may be ambiguous in the case of sets that contain some subsets as elements such as x x displaystyle x x In this case some care may be needed for example by using square brackets f A f 1 C displaystyle f A f 1 C for images and preimages of subsets and ordinary parentheses for images and preimages of elements Injective surjective and bijective functions Let f X Y displaystyle f X to Y be a function The function f is injective or one to one or is an injection if f a f b for every two different elements a and b of X Equivalently f is injective if and only if for every y Y displaystyle y in Y the preimage f 1 y displaystyle f 1 y contains at most one element An empty function is always injective If X is not the empty set then f is injective if and only if there exists a function g Y X displaystyle g Y to X such that g f idX displaystyle g circ f operatorname id X that is if f has a left inverse Proof If f is injective for defining g one chooses an element x0 displaystyle x 0 in X which exists as X is supposed to be nonempty and one defines g by g y x displaystyle g y x if y f x displaystyle y f x and g y x0 displaystyle g y x 0 if y f X displaystyle y not in f X Conversely if g f idX displaystyle g circ f operatorname id X and y f x displaystyle y f x then x g y displaystyle x g y and thus f 1 y x displaystyle f 1 y x The function f is surjective or onto or is a surjection if its range f X displaystyle f X equals its codomain Y displaystyle Y that is if for each element y displaystyle y of the codomain there exists some element x displaystyle x of the domain such that f x y displaystyle f x y in other words the preimage f 1 y displaystyle f 1 y of every y Y displaystyle y in Y is nonempty If as usual in modern mathematics the axiom of choice is assumed then f is surjective if and only if there exists a function g Y X displaystyle g Y to X such that f g idY displaystyle f circ g operatorname id Y that is if f has a right inverse The axiom of choice is needed because if f is surjective one defines g by g y x displaystyle g y x where x displaystyle x is an arbitrarily chosen element of f 1 y displaystyle f 1 y The function f is bijective or is a bijection or a one to one correspondence if it is both injective and surjective That is f is bijective if for every y Y displaystyle y in Y the preimage f 1 y displaystyle f 1 y contains exactly one element The function f is bijective if and only if it admits an inverse function that is a function g Y X displaystyle g Y to X such that g f idX displaystyle g circ f operatorname id X and f g idY displaystyle f circ g operatorname id Y Contrarily to the case of surjections this does not require the axiom of choice the proof is straightforward Every function f X Y displaystyle f X to Y may be factorized as the composition i s displaystyle i circ s of a surjection followed by an injection where s is the canonical surjection of X onto f X and i is the canonical injection of f X into Y This is the canonical factorization of f One to one and onto are terms that were more common in the older English language literature injective surjective and bijective were originally coined as French words in the second quarter of the 20th century by the Bourbaki group and imported into English As a word of caution a one to one function is one that is injective while a one to one correspondence refers to a bijective function Also the statement f maps X onto Y differs from f maps X into B in that the former implies that f is surjective while the latter makes no assertion about the nature of f In a complicated reasoning the one letter difference can easily be missed Due to the confusing nature of this older terminology these terms have declined in popularity relative to the Bourbakian terms which have also the advantage of being more symmetrical Restriction and extension If f X Y displaystyle f X to Y is a function and S is a subset of X then the restriction of f displaystyle f to S denoted f S displaystyle f S is the function from S to Y defined by f S x f x displaystyle f S x f x for all x in S Restrictions can be used to define partial inverse functions if there is a subset S of the domain of a function f displaystyle f such that f S displaystyle f S is injective then the canonical surjection of f S displaystyle f S onto its image f S S f S displaystyle f S S f S is a bijection and thus has an inverse function from f S displaystyle f S to S One application is the definition of inverse trigonometric functions For example the cosine function is injective when restricted to the interval 0 p The image of this restriction is the interval 1 1 and thus the restriction has an inverse function from 1 1 to 0 p which is called arccosine and is denoted arccos Function restriction may also be used for gluing functions together Let X i IUi textstyle X bigcup i in I U i be the decomposition of X as a union of subsets and suppose that a function fi Ui Y displaystyle f i U i to Y is defined on each Ui displaystyle U i such that for each pair i j displaystyle i j of indices the restrictions of fi displaystyle f i and fj displaystyle f j to Ui Uj displaystyle U i cap U j are equal Then this defines a unique function f X Y displaystyle f X to Y such that f Ui fi displaystyle f U i f i for all i This is the way that functions on manifolds are defined An extension of a function f is a function g such that f is a restriction of g A typical use of this concept is the process of analytic continuation that allows extending functions whose domain is a small part of the complex plane to functions whose domain is almost the whole complex plane Here is another classical example of a function extension that is encountered when studying homographies of the real line A homography is a function h x ax bcx d displaystyle h x frac ax b cx d such that ad bc 0 Its domain is the set of all real numbers different from d c displaystyle d c and its image is the set of all real numbers different from a c displaystyle a c If one extends the real line to the projectively extended real line by including one may extend h to a bijection from the extended real line to itself by setting h a c displaystyle h infty a c and h d c displaystyle h d c infty In calculusThe idea of function starting in the 17th century was fundamental to the new infinitesimal calculus At that time only real valued functions of a real variable were considered and all functions were assumed to be smooth But the definition was soon extended to functions of several variables and to functions of a complex variable In the second half of the 19th century the mathematically rigorous definition of a function was introduced and functions with arbitrary domains and codomains were defined Functions are now used throughout all areas of mathematics In introductory calculus when the word function is used without qualification it means a real valued function of a single real variable The more general definition of a function is usually introduced to second or third year college students with STEM majors and in their senior year they are introduced to calculus in a larger more rigorous setting in courses such as real analysis and complex analysis Real function Graph of a linear functionGraph of a polynomial function here a quadratic function Graph of two trigonometric functions sine and cosine A real function is a real valued function of a real variable that is a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval In this section these functions are simply called functions The functions that are most commonly considered in mathematics and its applications have some regularity that is they are continuous differentiable and even analytic This regularity insures that these functions can be visualized by their graphs In this section all functions are differentiable in some interval Functions enjoy pointwise operations that is if f and g are functions their sum difference and product are functions defined by f g x f x g x f g x f x g x f g x f x g x displaystyle begin aligned f g x amp f x g x f g x amp f x g x f cdot g x amp f x cdot g x end aligned The domains of the resulting functions are the intersection of the domains of f and g The quotient of two functions is defined similarly by fg x f x g x displaystyle frac f g x frac f x g x but the domain of the resulting function is obtained by removing the zeros of g from the intersection of the domains of f and g The polynomial functions are defined by polynomials and their domain is the whole set of real numbers They include constant functions linear functions and quadratic functions Rational functions are quotients of two polynomial functions and their domain is the real numbers with a finite number of them removed to avoid division by zero The simplest rational function is the function x 1x displaystyle x mapsto frac 1 x whose graph is a hyperbola and whose domain is the whole real line except for 0 The derivative of a real differentiable function is a real function An antiderivative of a continuous real function is a real function that has the original function as a derivative For example the function x 1x textstyle x mapsto frac 1 x is continuous and even differentiable on the positive real numbers Thus one antiderivative which takes the value zero for x 1 is a differentiable function called the natural logarithm A real function f is monotonic in an interval if the sign of f x f y x y displaystyle frac f x f y x y does not depend of the choice of x and y in the interval If the function is differentiable in the interval it is monotonic if the sign of the derivative is constant in the interval If a real function f is monotonic in an interval I it has an inverse function which is a real function with domain f I and image I This is how inverse trigonometric functions are defined in terms of trigonometric functions where the trigonometric functions are monotonic Another example the natural logarithm is monotonic on the positive real numbers and its image is the whole real line therefore it has an inverse function that is a bijection between the real numbers and the positive real numbers This inverse is the exponential function Many other real functions are defined either by the implicit function theorem the inverse function is a particular instance or as solutions of differential equations For example the sine and the cosine functions are the solutions of the linear differential equation y y 0 displaystyle y y 0 such that sin 0 0 cos 0 1 sin x x 0 1 cos x x 0 0 displaystyle sin 0 0 quad cos 0 1 quad frac partial sin x partial x 0 1 quad frac partial cos x partial x 0 0 Vector valued function When the elements of the codomain of a function are vectors the function is said to be a vector valued function These functions are particularly useful in applications for example modeling physical properties For example the function that associates to each point of a fluid its velocity vector is a vector valued function Some vector valued functions are defined on a subset of Rn displaystyle mathbb R n or other spaces that share geometric or topological properties of Rn displaystyle mathbb R n such as manifolds These vector valued functions are given the name vector fields Function spaceIn mathematical analysis and more specifically in functional analysis a function space is a set of scalar valued or vector valued functions which share a specific property and form a topological vector space For example the real smooth functions with a compact support that is they are zero outside some compact set form a function space that is at the basis of the theory of distributions Function spaces play a fundamental role in advanced mathematical analysis by allowing the use of their algebraic and topological properties for studying properties of functions For example all theorems of existence and uniqueness of solutions of ordinary or partial differential equations result of the study of function spaces Multi valued functionsTogether the two square roots of all nonnegative real numbers form a single smooth curve Several methods for specifying functions of real or complex variables start from a local definition of the function at a point or on a neighbourhood of a point and then extend by continuity the function to a much larger domain Frequently for a starting point x0 displaystyle x 0 there are several possible starting values for the function For example in defining the square root as the inverse function of the square function for any positive real number x0 displaystyle x 0 there are two choices for the value of the square root one of which is positive and denoted x0 displaystyle sqrt x 0 and another which is negative and denoted x0 displaystyle sqrt x 0 These choices define two continuous functions both having the nonnegative real numbers as a domain and having either the nonnegative or the nonpositive real numbers as images When looking at the graphs of these functions one can see that together they form a single smooth curve It is therefore often useful to consider these two square root functions as a single function that has two values for positive x one value for 0 and no value for negative x In the preceding example one choice the positive square root is more natural than the other This is not the case in general For example let consider the implicit function that maps y to a root x of x3 3x y 0 displaystyle x 3 3x y 0 see the figure on the right For y 0 one may choose either 0 3 or 3 displaystyle 0 sqrt 3 text or sqrt 3 for x By the implicit function theorem each choice defines a function for the first one the maximal domain is the interval 2 2 and the image is 1 1 for the second one the domain is 2 and the image is 1 for the last one the domain is 2 and the image is 1 As the three graphs together form a smooth curve and there is no reason for preferring one choice these three functions are often considered as a single multi valued function of y that has three values for 2 lt y lt 2 and only one value for y 2 and y 2 Usefulness of the concept of multi valued functions is clearer when considering complex functions typically analytic functions The domain to which a complex function may be extended by analytic continuation generally consists of almost the whole complex plane However when extending the domain through two different paths one often gets different values For example when extending the domain of the square root function along a path of complex numbers with positive imaginary parts one gets i for the square root of 1 while when extending through complex numbers with negative imaginary parts one gets i There are generally two ways of solving the problem One may define a function that is not continuous along some curve called a branch cut Such a function is called the principal value of the function The other way is to consider that one has a multi valued function which is analytic everywhere except for isolated singularities but whose value may jump if one follows a closed loop around a singularity This jump is called the monodromy In the foundations of mathematicsThe definition of a function that is given in this article requires the concept of set since the domain and the codomain of a function must be a set This is not a problem in usual mathematics as it is generally not difficult to consider only functions whose domain and codomain are sets which are well defined even if the domain is not explicitly defined However it is sometimes useful to consider more general functions For example the singleton set may be considered as a function x x displaystyle x mapsto x Its domain would include all sets and therefore would not be a set In usual mathematics one avoids this kind of problem by specifying a domain which means that one has many singleton functions However when establishing foundations of mathematics one may have to use functions whose domain codomain or both are not specified and some authors often logicians give precise definitions for these weakly specified functions These generalized functions may be critical in the development of a formalization of the foundations of mathematics For example Von Neumann Bernays Godel set theory is an extension of the set theory in which the collection of all sets is a class This theory includes the replacement axiom which may be stated as If X is a set and F is a function then F X is a set In alternative formulations of the foundations of mathematics using type theory rather than set theory functions are taken as primitive notions rather than defined from other kinds of object They are the inhabitants of function types and may be constructed using expressions in the lambda calculus In computer scienceIn computer programming a function is in general a piece of a computer program which implements the abstract concept of function That is it is a program unit that produces an output for each input However in many programming languages every subroutine is called a function even when there is no output and when the functionality consists simply of modifying some data in the computer memory Functional programming is the programming paradigm consisting of building programs by using only subroutines that behave like mathematical functions For example if then else is a function that takes three functions as arguments and depending on the result of the first function true or false returns the result of either the second or the third function An important advantage of functional programming is that it makes easier program proofs as being based on a well founded theory the lambda calculus see below Except for computer language terminology function has the usual mathematical meaning in computer science In this area a property of major interest is the computability of a function For giving a precise meaning to this concept and to the related concept of algorithm several models of computation have been introduced the old ones being general recursive functions lambda calculus and Turing machine The fundamental theorem of computability theory is that these three models of computation define the same set of computable functions and that all the other models of computation that have ever been proposed define the same set of computable functions or a smaller one The Church Turing thesis is the claim that every philosophically acceptable definition of a computable function defines also the same functions General recursive functions are partial functions from integers to integers that can be defined from constant functions successor and projection functions via the operators composition primitive recursion and minimization Although defined only for functions from integers to integers they can model any computable function as a consequence of the following properties a computation is the manipulation of finite sequences of symbols digits of numbers formulas every sequence of symbols may be coded as a sequence of bits a bit sequence can be interpreted as the binary representation of an integer Lambda calculus is a theory that defines computable functions without using set theory and is the theoretical background of functional programming It consists of terms that are either variables function definitions 𝜆 terms or applications of functions to terms Terms are manipulated through some rules the a equivalence the b reduction and the h conversion which are the axioms of the theory and may be interpreted as rules of computation In its original form lambda calculus does not include the concepts of domain and codomain of a function Roughly speaking they have been introduced in the theory under the name of type in typed lambda calculus Most kinds of typed lambda calculi can define fewer functions than untyped lambda calculus See alsoSubpages History of the function concept List of types of functions List of functions Function fitting Implicit function Generalizations Higher order function Homomorphism Morphism Microfunction Distribution Functor Related topics Associative array Closed form expression Elementary function Functional Functional decomposition Functional predicate Functional programming Parametric equation Set function Simple functionNotesThis definition of graph refers to a set of pairs of objects Graphs in the sense of diagrams are most applicable to functions from the real numbers to themselves All functions can be described by sets of pairs but it may not be practical to construct a diagram for functions between other sets such as sets of matrices The true domain of such a function is often called the domain of definition of the function n may also be 1 thus subsuming functions as defined above For n 0 each constant is a special case of a multivariate function too Here elementary has not exactly its common sense although most functions that are encountered in elementary courses of mathematics are elementary in this sense some elementary functions are not elementary for the common sense for example those that involve roots of polynomials of high degree By definition the graph of the empty function to X is a subset of the Cartesian product X and this product is empty The axiom of choice is not needed here as the choice is done in a single set ReferencesHalmos 1970 p 30 the words map mapping transformation correspondence and operator are sometimes used synonymously Halmos 1970 Mapping Encyclopedia of Mathematics EMS Press 2001 1994 function Definition Types Examples amp Facts Encyclopedia Britannica Retrieved 2020 08 17 Spivak 2008 p 39 Kudryavtsev L D 2001 1994 Function Encyclopedia of Mathematics EMS Press Taalman Laura Kohn Peter 2014 Calculus New York City W H Freeman and Company p 3 ISBN 978 1 4292 4186 1 LCCN 2012947365 OCLC 856545590 OL 27544563M Trench William F 2013 2003 Introduction to Real Analysis 2 04th ed Pearson Education originally self republished by the author pp 30 32 ISBN 0 13 045786 8 LCCN 2002032369 OCLC 953799815 Zbl 1204 00023 Thomson Brian S Bruckner Judith B Bruckner Andrew M 2008 2001 Elementary Real Analysis PDF 2nd ed Prentice Hall originally 2nd ed self republished by the authors pp A 4 A 5 ISBN 978 1 4348 4367 8 OCLC 1105855173 OL 31844948M Zbl 0872 26001 Halmos Paul R 1974 Naive Set Theory Springer pp 30 33 Larson Ron Edwards Bruce H 2010 Calculus of a Single Variable Cengage Learning p 19 ISBN 978 0 538 73552 0 Weisstein Eric W Map mathworld wolfram com Retrieved 2019 06 12 Lang Serge 1987 III 1 Mappings Linear Algebra 3rd ed Springer p 43 ISBN 978 0 387 96412 6 A function is a special type of mapping namely it is a mapping from a set into the set of numbers i e into R or C or into a field K Apostol T M 1981 Mathematical Analysis 2nd ed Addison Wesley p 35 ISBN 978 0 201 00288 1 OCLC 928947543 James Robert C James Glenn 1992 Mathematics dictionary 5th ed Van Nostrand Reinhold p 202 ISBN 0 442 00741 8 OCLC 25409557 James amp James 1992 p 48 Gowers Timothy Barrow Green June Leader Imre eds 2008 The Princeton Companion to Mathematics Princeton New Jersey Princeton University Press p 11 doi 10 1515 9781400830398 ISBN 978 0 691 11880 2 JSTOR j ctt7sd01 LCCN 2008020450 MR 2467561 OCLC 227205932 OL 19327100M Zbl 1242 00016 Quantities and Units Part 2 Mathematical signs and symbols to be used in the natural sciences and technology p 15 ISO 80000 2 ISO IEC 2009 12 01 Ivanova O A 2001 1994 Injection Encyclopedia of Mathematics EMS Press Ivanova O A 2001 1994 Surjection Encyclopedia of Mathematics EMS Press Ivanova O A 2001 1994 Bijection Encyclopedia of Mathematics EMS Press Hartnett Kevin 9 November 2020 Inside the Secret Math Society Known Simply as Nicolas Bourbaki Quanta Magazine Retrieved 2024 06 05 Godel 1940 p 16 Jech 2003 p 11 Cunningham 2016 p 57 Klev Ansten 2019 A comparison of type theory with set theory In Centrone Stefania Kant Deborah Sarikaya Deniz eds Reflections on the Foundations of Mathematics Univalent Foundations Set Theory and General Thoughts Synthese Library Vol 407 Cham Springer pp 271 292 doi 10 1007 978 3 030 15655 8 12 ISBN 978 3 030 15654 1 MR 4352345 SourcesBartle Robert 1976 The Elements of Real Analysis 2nd ed Wiley ISBN 978 0 471 05465 8 OCLC 465115030 Bloch Ethan D 2011 Proofs and Fundamentals A First Course in Abstract Mathematics Springer ISBN 978 1 4419 7126 5 Cunningham Daniel W 2016 Set theory A First Course Cambridge University Press ISBN 978 1 107 12032 7 Godel Kurt 1940 The Consistency of the Continuum Hypothesis Princeton University Press ISBN 978 0 691 07927 1 Halmos Paul R 1970 Naive Set Theory Springer Verlag ISBN 978 0 387 90092 6 Jech Thomas 2003 Set theory 3rd ed Springer Verlag ISBN 978 3 540 44085 7 Spivak Michael 2008 Calculus 4th ed Publish or Perish ISBN 978 0 914098 91 1 Further readingAnton Howard 1980 Calculus with Analytical Geometry Wiley ISBN 978 0 471 03248 9 Bartle Robert G 1976 The Elements of Real Analysis 2nd ed Wiley ISBN 978 0 471 05464 1 Dubinsky Ed Harel Guershon 1992 The Concept of Function Aspects of Epistemology and Pedagogy Mathematical Association of America ISBN 978 0 88385 081 7 Hammack Richard 2009 12 Functions PDF Book of Proof Virginia Commonwealth University Retrieved 2012 08 01 Husch Lawrence S 2001 Visual Calculus University of Tennessee Retrieved 2007 09 27 Katz Robert 1964 Axiomatic Analysis D C Heath and Company Kleiner Israel 1989 Evolution of the Function Concept A Brief Survey The College Mathematics Journal 20 4 282 300 CiteSeerX 10 1 1 113 6352 doi 10 2307 2686848 JSTOR 2686848 Lutzen Jesper 2003 Between rigor and applications Developments in the concept of function in mathematical analysis In Porter Roy ed The Cambridge History of Science The modern physical and mathematical sciences Cambridge University Press ISBN 978 0 521 57199 9 An approachable and diverting historical presentation Malik M A 1980 Historical and pedagogical aspects of the definition of function International Journal of Mathematical Education in Science and Technology 11 4 489 492 doi 10 1080 0020739800110404 Reichenbach Hans 1947 Elements of Symbolic Logic Dover ISBN 0 486 24004 5 Ruthing D 1984 Old Intelligencer Some definitions of the concept of function from Bernoulli Joh to Bourbaki N Mathematical Intelligencer 6 4 71 78 doi 10 1007 BF03026743 S2CID 189883712 Thomas George B Finney Ross L 1995 Calculus and Analytic Geometry 9th ed Addison Wesley ISBN 978 0 201 53174 9 External links