![Polar coordinates](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi9kL2QzL0V4YW1wbGVzX29mX1BvbGFyX0Nvb3JkaW5hdGVzLnN2Zy8xNjAwcHgtRXhhbXBsZXNfb2ZfUG9sYXJfQ29vcmRpbmF0ZXMuc3ZnLnBuZw==.png )
In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
- the point's distance from a reference point called the pole, and
- the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlF6TDBWNFlXMXdiR1Z6WDI5bVgxQnZiR0Z5WDBOdmIzSmthVzVoZEdWekxuTjJaeTh5TWpCd2VDMUZlR0Z0Y0d4bGMxOXZabDlRYjJ4aGNsOURiMjl5WkdsdVlYUmxjeTV6ZG1jdWNHNW4ucG5n.png)
The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. The pole is analogous to the origin in a Cartesian coordinate system.
Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as spirals. Planar physical systems with bodies moving around a central point, or phenomena originating from a central point, are often simpler and more intuitive to model using polar coordinates.
The polar coordinate system is extended to three dimensions in two ways: the cylindrical coordinate system adds a second distance coordinate, and the spherical coordinate system adds a second angular coordinate.
Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the system's concepts in the mid-17th century, though the actual term polar coordinates has been attributed to Gregorio Fontana in the 18th century. The initial motivation for introducing the polar system was the study of circular and orbital motion.
History
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWpMMk0yTDBobFlXUmZiMlpmU0dsd2NHRnlZMmgxYzE4bE1qaGpjbTl3Y0dWa0pUSTVMbXB3Wnk4eE9EQndlQzFJWldGa1gyOW1YMGhwY0hCaGNtTm9kWE5mSlRJNFkzSnZjSEJsWkNVeU9TNXFjR2M9LmpwZw==.jpg)
The concepts of angle and radius were already used by ancient peoples of the first millennium BC. The Greek astronomer and astrologer Hipparchus (190–120 BC) created a table of chord functions giving the length of the chord for each angle, and there are references to his using polar coordinates in establishing stellar positions. In On Spirals, Archimedes describes the Archimedean spiral, a function whose radius depends on the angle. The Greek work, however, did not extend to a full coordinate system.
From the 8th century AD onward, astronomers developed methods for approximating and calculating the direction to Mecca (qibla)—and its distance—from any location on the Earth. From the 9th century onward they were using spherical trigonometry and map projection methods to determine these quantities accurately. The calculation is essentially the conversion of the equatorial polar coordinates of Mecca (i.e. its longitude and latitude) to its polar coordinates (i.e. its qibla and distance) relative to a system whose reference meridian is the great circle through the given location and the Earth's poles and whose polar axis is the line through the location and its antipodal point.
There are various accounts of the introduction of polar coordinates as part of a formal coordinate system. The full history of the subject is described in Harvard professor Julian Lowell Coolidge's Origin of Polar Coordinates. Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-seventeenth century. Saint-Vincent wrote about them privately in 1625 and published his work in 1647, while Cavalieri published his in 1635 with a corrected version appearing in 1653. Cavalieri first used polar coordinates to solve a problem relating to the area within an Archimedean spiral. Blaise Pascal subsequently used polar coordinates to calculate the length of parabolic arcs.
In Method of Fluxions (written 1671, published 1736), Sir Isaac Newton examined the transformations between polar coordinates, which he referred to as the "Seventh Manner; For Spirals", and nine other coordinate systems. In the journal Acta Eruditorum (1691), Jacob Bernoulli used a system with a point on a line, called the pole and polar axis respectively. Coordinates were specified by the distance from the pole and the angle from the polar axis. Bernoulli's work extended to finding the radius of curvature of curves expressed in these coordinates.
The actual term polar coordinates has been attributed to Gregorio Fontana and was used by 18th-century Italian writers. The term appeared in English in George Peacock's 1816 translation of Lacroix's Differential and Integral Calculus.Alexis Clairaut was the first to think of polar coordinates in three dimensions, and Leonhard Euler was the first to actually develop them.
Conventions
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHhMekV6TDFCdmJHRnlYMmR5WVhCb1gzQmhjR1Z5TG5OMlp5OHlNakJ3ZUMxUWIyeGhjbDluY21Gd2FGOXdZWEJsY2k1emRtY3VjRzVuLnBuZw==.png)
The radial coordinate is often denoted by r or ρ, and the angular coordinate by φ, θ, or t. The angular coordinate is specified as φ by ISO standard 31-11. However, in mathematical literature the angle is often denoted by θ instead.
Angles in polar notation are generally expressed in either degrees or radians (2π rad being equal to 360°). Degrees are traditionally used in navigation, surveying, and many applied disciplines, while radians are more common in mathematics and mathematical physics.
The angle φ is defined to start at 0° from a reference direction, and to increase for rotations in either clockwise (cw) or counterclockwise (ccw) orientation. For example, in mathematics, the reference direction is usually drawn as a ray from the pole horizontally to the right, and the polar angle increases to positive angles for ccw rotations, whereas in navigation (bearing, heading) the 0°-heading is drawn vertically upwards and the angle increases for cw rotations. The polar angles decrease towards negative values for rotations in the respectively opposite orientations.
Uniqueness of polar coordinates
Adding any number of full turns (360°) to the angular coordinate does not change the corresponding direction. Similarly, any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction (adding 180° to the polar angle). Therefore, the same point (r, φ) can be expressed with an infinite number of different polar coordinates (r, φ + n × 360°) and (−r, φ + 180° + n × 360°) = (−r, φ + (2n + 1) × 180°), where n is an arbitrary integer. Moreover, the pole itself can be expressed as (0, φ) for any angle φ.
Where a unique representation is needed for any point besides the pole, it is usual to limit r to positive numbers (r > 0) and φ to either the interval [0, 360°) or the interval (−180°, 180°], which in radians are [0, 2π) or (−π, π]. Another convention, in reference to the usual codomain of the arctan function, is to allow for arbitrary nonzero real values of the radial component and restrict the polar angle to (−90°, 90°]. In all cases a unique azimuth for the pole (r = 0) must be chosen, e.g., φ = 0.
Converting between polar and Cartesian coordinates
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODNMemM0TDFCdmJHRnlYM1J2WDJOaGNuUmxjMmxoYmk1emRtY3ZNakl3Y0hndFVHOXNZWEpmZEc5ZlkyRnlkR1Z6YVdGdUxuTjJaeTV3Ym1jPS5wbmc=.png)
The polar coordinates r and φ can be converted to the Cartesian coordinates x and y by using the trigonometric functions sine and cosine:
The Cartesian coordinates x and y can be converted to polar coordinates r and φ with r ≥ 0 and φ in the interval (−π, π] by: where hypot is the Pythagorean sum and atan2 is a common variation on the arctangent function defined as
If r is calculated first as above, then this formula for φ may be stated more simply using the arccosine function:
Complex numbers
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODNMemN4TDBsdFlXZHBibUZ5ZVc1MWJXSmxjakl1YzNabkx6SXlNSEI0TFVsdFlXZHBibUZ5ZVc1MWJXSmxjakl1YzNabkxuQnVadz09LnBuZw==.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODNMemN4TDBWMWJHVnlKVEkzYzE5bWIzSnRkV3hoTG5OMlp5OHlNakJ3ZUMxRmRXeGxjaVV5TjNOZlptOXliWFZzWVM1emRtY3VjRzVuLnBuZw==.png)
Every complex number can be represented as a point in the complex plane, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form).
In polar form, the distance and angle coordinates are often referred to as the number's magnitude and argument respectively. Two complex numbers can be multiplied by adding their arguments and multiplying their magnitudes.
The complex number z can be represented in rectangular form as where i is the imaginary unit, or can alternatively be written in polar form as
and from there, by Euler's formula, as
where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy. To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used. Equivalent are the cis and angle notations:
For the operations of multiplication, division, exponentiation, and root extraction of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:
- Multiplication
- Division
- Exponentiation (De Moivre's formula)
- Root Extraction (Principal root)
Polar equation of a curve
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelV6TDBOaGNuUmxjMmxoYmw5MGIxOXdiMnhoY2k1bmFXWXZNakl3Y0hndFEyRnlkR1Z6YVdGdVgzUnZYM0J2YkdGeUxtZHBaZz09LmdpZg==.gif)
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r. Note that, in contrast to Cartesian coordinates, the independent variable φ is the second entry in the ordered pair.
Different forms of symmetry can be deduced from the equation of a polar function r:
- If r(−φ) = r(φ) the curve will be symmetrical about the horizontal (0°/180°) ray;
- If r(π − φ) = r(φ) it will be symmetric about the vertical (90°/270°) ray:
- If r(φ − α) = r(φ) it will be rotationally symmetric by α clockwise and counterclockwise about the pole.
Because of the circular nature of the polar coordinate system, many curves can be described by a rather simple polar equation, whereas their Cartesian form is much more intricate. Among the best known of these curves are the polar rose, Archimedean spiral, lemniscate, limaçon, and cardioid.
For the circle, line, and polar rose below, it is understood that there are no restrictions on the domain and range of the curve.
Circle
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHpMek16TDBOcGNtTnNaVjl5SlRORU1TNXpkbWN2TWpJd2NIZ3RRMmx5WTJ4bFgzSWxNMFF4TG5OMlp5NXdibWM9LnBuZw==.png)
The general equation for a circle with a center at and radius a is
This can be simplified in various ways, to conform to more specific cases, such as the equation for a circle with a center at the pole and radius a.
When r0 = a or the origin lies on the circle, the equation becomes
In the general case, the equation can be solved for r, giving The solution with a minus sign in front of the square root gives the same curve.
Line
Radial lines (those running through the pole) are represented by the equation where
is the angle of elevation of the line; that is,
, where
is the slope of the line in the Cartesian coordinate system. The non-radial line that crosses the radial line
perpendicularly at the point
has the equation
Otherwise stated is the point in which the tangent intersects the imaginary circle of radius
Polar rose
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlJrTDFKdmMyVmZNbk5wYmlVeU9EUjBhR1YwWVNVeU9TNXpkbWN2TWpJd2NIZ3RVbTl6WlY4eWMybHVKVEk0TkhSb1pYUmhKVEk1TG5OMlp5NXdibWM9LnBuZw==.png)
A polar rose is a mathematical curve that looks like a petaled flower, and that can be expressed as a simple polar equation,
for any constant γ0 (including 0). If k is an integer, these equations will produce a k-petaled rose if k is odd, or a 2k-petaled rose if k is even. If k is rational, but not an integer, a rose-like shape may form but with overlapping petals. Note that these equations never define a rose with 2, 6, 10, 14, etc. petals. The variable a directly represents the length or amplitude of the petals of the rose, while k relates to their spatial frequency. The constant γ0 can be regarded as a phase angle.
Archimedean spiral
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlprTDFOd2FYSmhiRjl2Wmw5QmNtTm9hVzFsWkdWekxuTjJaeTh5TWpCd2VDMVRjR2x5WVd4ZmIyWmZRWEpqYUdsdFpXUmxjeTV6ZG1jdWNHNW4ucG5n.png)
The Archimedean spiral is a spiral discovered by Archimedes which can also be expressed as a simple polar equation. It is represented by the equation Changing the parameter a will turn the spiral, while b controls the distance between the arms, which for a given spiral is always constant. The Archimedean spiral has two arms, one for φ > 0 and one for φ < 0. The two arms are smoothly connected at the pole. If a = 0, taking the mirror image of one arm across the 90°/270° line will yield the other arm. This curve is notable as one of the first curves, after the conic sections, to be described in a mathematical treatise, and as a prime example of a curve best defined by a polar equation.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHpMek0xTDBWc2NITXRjMnh5TG5OMlp5OHlNakJ3ZUMxRmJIQnpMWE5zY2k1emRtY3VjRzVuLnBuZw==.png)
Conic sections
A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: where e is the eccentricity and
is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve). If e > 1, this equation defines a hyperbola; if e = 1, it defines a parabola; and if e < 1, it defines an ellipse. The special case e = 0 of the latter results in a circle of the radius
.
Quadratrix
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODNMemRoTDFGMVlXUnlZWFJ5YVhoZllXNXBiV0YwYVc5dUxtZHBaaTh5TWpCd2VDMVJkV0ZrY21GMGNtbDRYMkZ1YVcxaGRHbHZiaTVuYVdZPS5naWY=.gif)
A quadratrix in the first quadrant (x, y) is a curve with y = ρ sin θ equal to the fraction of the quarter circle with radius r determined by the radius through the curve point. Since this fraction is , the curve is given by
.
Intersection of two polar curves
The graphs of two polar functions and
have possible intersections of three types:
- In the origin, if the equations
and
have at least one solution each.
- All the points
where
are solutions to the equation
where
is an integer.
- All the points
where
are solutions to the equation
where
is an integer.
Calculus
Calculus can be applied to equations expressed in polar coordinates.
The angular coordinate φ is expressed in radians throughout this section, which is the conventional choice when doing calculus.
Differential calculus
Using x = r cos φ and y = r sin φ, one can derive a relationship between derivatives in Cartesian and polar coordinates. For a given function, u(x,y), it follows that (by computing its total derivatives) or
Hence, we have the following formula:
Using the inverse coordinates transformation, an analogous reciprocal relationship can be derived between the derivatives. Given a function u(r,φ), it follows that or
Hence, we have the following formulae:
To find the Cartesian slope of the tangent line to a polar curve r(φ) at any given point, the curve is first expressed as a system of parametric equations.
Differentiating both equations with respect to φ yields
Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point (r(φ), φ):
For other useful formulas including divergence, gradient, and Laplacian in polar coordinates, see curvilinear coordinates.
Integral calculus (arc length)
The arc length (length of a line segment) defined by a polar function is found by the integration over the curve r(φ). Let L denote this length along the curve starting from points A through to point B, where these points correspond to φ = a and φ = b such that 0 < b − a < 2π. The length of L is given by the following integral
Integral calculus (area)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODBMelJqTDFCdmJHRnlYMk52YjNKa2FXNWhkR1Z6WDJsdWRHVm5jbUYwYVc5dVgzSmxaMmx2Ymk1emRtY3ZNakl3Y0hndFVHOXNZWEpmWTI5dmNtUnBibUYwWlhOZmFXNTBaV2R5WVhScGIyNWZjbVZuYVc5dUxuTjJaeTV3Ym1jPS5wbmc=.png)
Let R denote the region enclosed by a curve r(φ) and the rays φ = a and φ = b, where 0 < b − a ≤ 2π. Then, the area of R is
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODBMelJqTDFCdmJHRnlYMk52YjNKa2FXNWhkR1Z6WDJsdWRHVm5jbUYwYVc5dVgxSnBaVzFoYm01ZmMzVnRMbk4yWnk4eU1qQndlQzFRYjJ4aGNsOWpiMjl5WkdsdVlYUmxjMTlwYm5SbFozSmhkR2x2Ymw5U2FXVnRZVzV1WDNOMWJTNXpkbWN1Y0c1bi5wbmc=.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelUwTDFCc1lXNXBiV1YwWlhJdWFuQm5Mekl5TUhCNExWQnNZVzVwYldWMFpYSXVhbkJuLmpwZw==.jpg)
This result can be found as follows. First, the interval [a, b] is divided into n subintervals, where n is some positive integer. Thus Δφ, the angle measure of each subinterval, is equal to b − a (the total angle measure of the interval), divided by n, the number of subintervals. For each subinterval i = 1, 2, ..., n, let φi be the midpoint of the subinterval, and construct a sector with the center at the pole, radius r(φi), central angle Δφ and arc length r(φi)Δφ. The area of each constructed sector is therefore equal to Hence, the total area of all of the sectors is
As the number of subintervals n is increased, the approximation of the area improves. Taking n → ∞, the sum becomes the Riemann sum for the above integral.
A mechanical device that computes area integrals is the planimeter, which measures the area of plane figures by tracing them out: this replicates integration in polar coordinates by adding a joint so that the 2-element linkage effects Green's theorem, converting the quadratic polar integral to a linear integral.
Generalization
Using Cartesian coordinates, an infinitesimal area element can be calculated as dA = dx dy. The substitution rule for multiple integrals states that, when using other coordinates, the Jacobian determinant of the coordinate conversion formula has to be considered:
Hence, an area element in polar coordinates can be written as
Now, a function, that is given in polar coordinates, can be integrated as follows:
Here, R is the same region as above, namely, the region enclosed by a curve r(φ) and the rays φ = a and φ = b. The formula for the area of R is retrieved by taking f identically equal to 1.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHlMekptTDBVbE5VVWxNamd0ZUNVMVJUSWxNamt1YzNabkx6SXlNSEI0TFVVbE5VVWxNamd0ZUNVMVJUSWxNamt1YzNabkxuQnVadz09LnBuZw==.png)
A more surprising application of this result yields the Gaussian integral:
Vector calculus
Vector calculus can also be applied to polar coordinates. For a planar motion, let be the position vector (r cos(φ), r sin(φ)), with r and φ depending on time t.
We define an orthonormal basis with three unit vectors: radial, transverse, and normal directions. The radial direction is defined by normalizing :
Radial and velocity directions span the plane of the motion, whose normal direction is denoted
:
The transverse direction is perpendicular to both radial and normal directions:
Then
This equation can be obtain by taking derivative of the function and derivatives of the unit basis vectors.
For a curve in 2D where the parameter is the previous equations simplify to:
Centrifugal and Coriolis terms
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlpsTDFCdmMybDBhVzl1WDNabFkzUnZjbDl3YkdGdVpWOXdiMnhoY2w5amIyOXlaSE11YzNabkx6RXdNSEI0TFZCdmMybDBhVzl1WDNabFkzUnZjbDl3YkdGdVpWOXdiMnhoY2w5amIyOXlaSE11YzNabkxuQnVadz09LnBuZw==.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlEyTDFabGJHOWphWFI1WDNabFkzUnZjbDl3YkdGdVpWOXdiMnhoY2w5amIyOXlaSE11YzNabkx6RTFNSEI0TFZabGJHOWphWFI1WDNabFkzUnZjbDl3YkdGdVpWOXdiMnhoY2w5amIyOXlaSE11YzNabkxuQnVadz09LnBuZw==.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelU0TDBGalkyVnNaWEpoZEdsdmJsOTJaV04wYjNKZmNHeGhibVZmY0c5c1lYSmZZMjl2Y21SekxuTjJaeTh5TURCd2VDMUJZMk5sYkdWeVlYUnBiMjVmZG1WamRHOXlYM0JzWVc1bFgzQnZiR0Z5WDJOdmIzSmtjeTV6ZG1jdWNHNW4ucG5n.png)
The term is sometimes referred to as the centripetal acceleration, and the term
as the Coriolis acceleration. For example, see Shankar.
Note: these terms, that appear when acceleration is expressed in polar coordinates, are a mathematical consequence of differentiation; they appear whenever polar coordinates are used. In planar particle dynamics these accelerations appear when setting up Newton's second law of motion in a rotating frame of reference. Here these extra terms are often called fictitious forces; fictitious because they are simply a result of a change in coordinate frame. That does not mean they do not exist, rather they exist only in the rotating frame.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHdMekJqTDBOdkxYSnZkR0YwYVc1blgyWnlZVzFsWDNabFkzUnZjaTV6ZG1jdk1qSXdjSGd0UTI4dGNtOTBZWFJwYm1kZlpuSmhiV1ZmZG1WamRHOXlMbk4yWnk1d2JtYz0ucG5n.png)
Co-rotating frame
For a particle in planar motion, one approach to attaching physical significance to these terms is based on the concept of an instantaneous co-rotating frame of reference. To define a co-rotating frame, first an origin is selected from which the distance r(t) to the particle is defined. An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment t, the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, dφ/dt. Next, the terms in the acceleration in the inertial frame are related to those in the co-rotating frame. Let the location of the particle in the inertial frame be (r(t), φ(t)), and in the co-rotating frame be (r′(t), φ′(t)). Because the co-rotating frame rotates at the same rate as the particle, dφ′/dt = 0. The fictitious centrifugal force in the co-rotating frame is mrΩ2, radially outward. The velocity of the particle in the co-rotating frame also is radially outward, because dφ′/dt = 0. The fictitious Coriolis force therefore has a value −2m(dr/dt)Ω, pointed in the direction of increasing φ only. Thus, using these forces in Newton's second law we find: where over dots represent derivatives with respect to time, and F is the net real force (as opposed to the fictitious forces). In terms of components, this vector equation becomes:
which can be compared to the equations for the inertial frame:
This comparison, plus the recognition that by the definition of the co-rotating frame at time t it has a rate of rotation Ω = dφ/dt, shows that we can interpret the terms in the acceleration (multiplied by the mass of the particle) as found in the inertial frame as the negative of the centrifugal and Coriolis forces that would be seen in the instantaneous, non-inertial co-rotating frame.
For general motion of a particle (as opposed to simple circular motion), the centrifugal and Coriolis forces in a particle's frame of reference commonly are referred to the instantaneous osculating circle of its motion, not to a fixed center of polar coordinates. For more detail, see centripetal force.
Differential geometry
In the modern terminology of differential geometry, polar coordinates provide coordinate charts for the differentiable manifold R2 \ {(0,0)}, the plane minus the origin. In these coordinates, the Euclidean metric tensor is given byThis can be seen via the change of variables formula for the metric tensor, or by computing the differential forms dx, dy via the exterior derivative of the 0-forms x = r cos(θ), y = r sin(θ) and substituting them in the Euclidean metric tensor ds2 = dx2 + dy2.
An elementary proof of the formula |
---|
Let Since Now we use the trigonometric identity If the radial and angular quantities are near to each other, and therefore near to a common quantity so that as stated. |
An orthonormal frame with respect to this metric is given bywith dual coframe
The connection form relative to this frame and the Levi-Civita connection is given by the skew-symmetric matrix of 1-forms
and hence the curvature form Ω = dω + ω∧ω vanishes. Therefore, as expected, the punctured plane is a flat manifold.
Extensions in 3D
The polar coordinate system is extended into three dimensions with two different coordinate systems, the cylindrical and spherical coordinate system.
Applications
Polar coordinates are two-dimensional and thus they can be used only where point positions lie on a single two-dimensional plane. They are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point. For instance, the examples above show how elementary polar equations suffice to define curves—such as the Archimedean spiral—whose equation in the Cartesian coordinate system would be much more intricate. Moreover, many physical systems—such as those concerned with bodies moving around a central point or with phenomena originating from a central point—are simpler and more intuitive to model using polar coordinates. The initial motivation for the introduction of the polar system was the study of circular and orbital motion.
Position and navigation
Polar coordinates are used often in navigation as the destination or direction of travel can be given as an angle and distance from the object being considered. For instance, aircraft use a slightly modified version of the polar coordinates for navigation. In this system, the one generally used for any sort of navigation, the 0° ray is generally called heading 360, and the angles continue in a clockwise direction, rather than counterclockwise, as in the mathematical system. Heading 360 corresponds to magnetic north, while headings 90, 180, and 270 correspond to magnetic east, south, and west, respectively. Thus, an aircraft traveling 5 nautical miles due east will be traveling 5 units at heading 90 (read zero-niner-zero by air traffic control).
Modeling
Systems displaying radial symmetry provide natural settings for the polar coordinate system, with the central point acting as the pole. A prime example of this usage is the groundwater flow equation when applied to radially symmetric wells. Systems with a radial force are also good candidates for the use of the polar coordinate system. These systems include gravitational fields, which obey the inverse-square law, as well as systems with point sources, such as radio antennas.
Radially asymmetric systems may also be modeled with polar coordinates. For example, a microphone's pickup pattern illustrates its proportional response to an incoming sound from a given direction, and these patterns can be represented as polar curves. The curve for a standard cardioid microphone, the most common unidirectional microphone, can be represented as r = 0.5 + 0.5sin(ϕ) at its target design frequency. The pattern shifts toward omnidirectionality at lower frequencies.
See also
- Curvilinear coordinates
- List of common coordinate transformations
- Log-polar coordinates
- Polar decomposition
- Unit circle
References
- Brown, Richard G. (1997). Andrew M. Gleason (ed.). Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis. Evanston, Illinois: McDougal Littell. ISBN 0-395-77114-5.
- Friendly, Michael (August 24, 2009). "Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization" (PDF). Archived from the original (PDF) on September 26, 2018. Retrieved July 23, 2016.
- King, David A. (2005). "The Sacred Geography of Islam". In Koetsier, Teun; Luc, Bergmans (eds.). Mathematics and the Divine: A Historical Study. Amsterdam: Elsevier. pp. 162–78. ISBN 0-444-50328-5.
- King (2005, p. 169). The calculations were as accurate as could be achieved under the limitations imposed by their assumption that the Earth was a perfect sphere.
- Coolidge, Julian (1952). "The Origin of Polar Coordinates". American Mathematical Monthly. 59 (2). Mathematical Association of America: 78–85. doi:10.2307/2307104. JSTOR 2307104.
- Boyer, C. B. (1949). "Newton as an Originator of Polar Coordinates". American Mathematical Monthly. 56 (2). Mathematical Association of America: 73–78. doi:10.2307/2306162. JSTOR 2306162.
- Miller, Jeff. "Earliest Known Uses of Some of the Words of Mathematics". Retrieved 2006-09-10.
- Smith, David Eugene (1925). History of Mathematics, Vol II. Boston: Ginn and Co. p. 324.
- Serway, Raymond A.; Jewett Jr., John W. (2005). Principles of Physics. Brooks/Cole—Thomson Learning. ISBN 0-534-49143-X.
- "Polar Coordinates and Graphing" (PDF). 2006-04-13. Archived from the original (PDF) on August 22, 2016. Retrieved 2006-09-22.
- Lee, Theodore; David Cohen; David Sklar (2005). Precalculus: With Unit-Circle Trigonometry (Fourth ed.). Thomson Brooks/Cole. ISBN 0-534-40230-5.
- Stewart, Ian; David Tall (1983). Complex Analysis (the Hitchhiker's Guide to the Plane). Cambridge University Press. ISBN 0-521-28763-4.
- Torrence, Bruce Follett; Eve Torrence (1999). The Student's Introduction to Mathematica. Cambridge University Press. ISBN 0-521-59461-8.
- Smith, Julius O. (2003). "Euler's Identity". Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing. ISBN 0-9745607-0-7. Archived from the original on 2006-09-15. Retrieved 2006-09-22.
- Claeys, Johan. "Polar coordinates". Archived from the original on 2006-04-27. Retrieved 2006-05-25.
- N.H. Lucas, P.J. Bunt & J.D Bedient (1976) Historical Roots of Elementary Mathematics, page 113
- Husch, Lawrence S. "Areas Bounded by Polar Curves". Archived from the original on 2000-03-01. Retrieved 2006-11-25.
- Lawrence S. Husch. "Tangent Lines to Polar Graphs". Archived from the original on 2019-11-21. Retrieved 2006-11-25.
- Ramamurti Shankar (1994). Principles of Quantum Mechanics (2nd ed.). Springer. p. 81. ISBN 0-306-44790-8.
- For the following discussion, see John R Taylor (2005). Classical Mechanics. University Science Books. p. §9.10, pp. 358–359. ISBN 1-891389-22-X.
- Santhi, Sumrit. "Aircraft Navigation System". Retrieved 2006-11-26.
- "Emergency Procedures" (PDF). Archived from the original (PDF) on 2013-06-03. Retrieved 2007-01-15.
- Eargle, John (2005). Handbook of Recording Engineering (Fourth ed.). Springer. ISBN 0-387-28470-2.
General references
- Adams, Robert; Christopher Essex (2013). Calculus: a complete course (Eighth ed.). Pearson Canada Inc. ISBN 978-0-321-78107-9.
- Anton, Howard; Irl Bivens; Stephen Davis (2002). Calculus (Seventh ed.). Anton Textbooks, Inc. ISBN 0-471-38157-8.
- Finney, Ross; George Thomas; Franklin Demana; Bert Waits (June 1994). Calculus: Graphical, Numerical, Algebraic (Single Variable Version ed.). Addison-Wesley Publishing Co. ISBN 0-201-55478-X.
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlJtTDFkcGEybGliMjlyY3kxc2IyZHZMV1Z1TFc1dmMyeHZaMkZ1TG5OMlp5ODBNSEI0TFZkcGEybGliMjlyY3kxc2IyZHZMV1Z1TFc1dmMyeHZaMkZ1TG5OMlp5NXdibWM9LnBuZw==.png)
- "Polar coordinates", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Coordinate Converter — converts between polar, Cartesian and spherical coordinates
- Polar Coordinate System Dynamic Demo
In mathematics the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates These arethe point s distance from a reference point called the pole and the point s direction from the pole relative to the direction of the polar axis a ray drawn from the pole Points in the polar coordinate system with pole O and polar axis L In green the point with radial coordinate 3 and angular coordinate 60 degrees or 3 60 In blue the point 4 210 The distance from the pole is called the radial coordinate radial distance or simply radius and the angle is called the angular coordinate polar angle or azimuth The pole is analogous to the origin in a Cartesian coordinate system Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane such as spirals Planar physical systems with bodies moving around a central point or phenomena originating from a central point are often simpler and more intuitive to model using polar coordinates The polar coordinate system is extended to three dimensions in two ways the cylindrical coordinate system adds a second distance coordinate and the spherical coordinate system adds a second angular coordinate Gregoire de Saint Vincent and Bonaventura Cavalieri independently introduced the system s concepts in the mid 17th century though the actual term polar coordinates has been attributed to Gregorio Fontana in the 18th century The initial motivation for introducing the polar system was the study of circular and orbital motion HistoryHipparchus The concepts of angle and radius were already used by ancient peoples of the first millennium BC The Greek astronomer and astrologer Hipparchus 190 120 BC created a table of chord functions giving the length of the chord for each angle and there are references to his using polar coordinates in establishing stellar positions In On Spirals Archimedes describes the Archimedean spiral a function whose radius depends on the angle The Greek work however did not extend to a full coordinate system From the 8th century AD onward astronomers developed methods for approximating and calculating the direction to Mecca qibla and its distance from any location on the Earth From the 9th century onward they were using spherical trigonometry and map projection methods to determine these quantities accurately The calculation is essentially the conversion of the equatorial polar coordinates of Mecca i e its longitude and latitude to its polar coordinates i e its qibla and distance relative to a system whose reference meridian is the great circle through the given location and the Earth s poles and whose polar axis is the line through the location and its antipodal point There are various accounts of the introduction of polar coordinates as part of a formal coordinate system The full history of the subject is described in Harvard professor Julian Lowell Coolidge s Origin of Polar Coordinates Gregoire de Saint Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid seventeenth century Saint Vincent wrote about them privately in 1625 and published his work in 1647 while Cavalieri published his in 1635 with a corrected version appearing in 1653 Cavalieri first used polar coordinates to solve a problem relating to the area within an Archimedean spiral Blaise Pascal subsequently used polar coordinates to calculate the length of parabolic arcs In Method of Fluxions written 1671 published 1736 Sir Isaac Newton examined the transformations between polar coordinates which he referred to as the Seventh Manner For Spirals and nine other coordinate systems In the journal Acta Eruditorum 1691 Jacob Bernoulli used a system with a point on a line called the pole and polar axis respectively Coordinates were specified by the distance from the pole and the angle from the polar axis Bernoulli s work extended to finding the radius of curvature of curves expressed in these coordinates The actual term polar coordinates has been attributed to Gregorio Fontana and was used by 18th century Italian writers The term appeared in English in George Peacock s 1816 translation of Lacroix s Differential and Integral Calculus Alexis Clairaut was the first to think of polar coordinates in three dimensions and Leonhard Euler was the first to actually develop them ConventionsA polar grid with several angles increasing in counterclockwise orientation and labelled in degrees The radial coordinate is often denoted by r or r and the angular coordinate by f 8 or t The angular coordinate is specified as f by ISO standard 31 11 However in mathematical literature the angle is often denoted by 8 instead Angles in polar notation are generally expressed in either degrees or radians 2p rad being equal to 360 Degrees are traditionally used in navigation surveying and many applied disciplines while radians are more common in mathematics and mathematical physics The angle f is defined to start at 0 from a reference direction and to increase for rotations in either clockwise cw or counterclockwise ccw orientation For example in mathematics the reference direction is usually drawn as a ray from the pole horizontally to the right and the polar angle increases to positive angles for ccw rotations whereas in navigation bearing heading the 0 heading is drawn vertically upwards and the angle increases for cw rotations The polar angles decrease towards negative values for rotations in the respectively opposite orientations Uniqueness of polar coordinates Adding any number of full turns 360 to the angular coordinate does not change the corresponding direction Similarly any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction adding 180 to the polar angle Therefore the same point r f can be expressed with an infinite number of different polar coordinates r f n 360 and r f 180 n 360 r f 2n 1 180 where n is an arbitrary integer Moreover the pole itself can be expressed as 0 f for any angle f Where a unique representation is needed for any point besides the pole it is usual to limit r to positive numbers r gt 0 and f to either the interval 0 360 or the interval 180 180 which in radians are 0 2p or p p Another convention in reference to the usual codomain of the arctan function is to allow for arbitrary nonzero real values of the radial component and restrict the polar angle to 90 90 In all cases a unique azimuth for the pole r 0 must be chosen e g f 0 Converting between polar and Cartesian coordinatesA diagram illustrating the relationship between polar and Cartesian coordinates The polar coordinates r and f can be converted to the Cartesian coordinates x and y by using the trigonometric functions sine and cosine x rcos f y rsin f displaystyle begin aligned x amp r cos varphi y amp r sin varphi end aligned The Cartesian coordinates x and y can be converted to polar coordinates r and f with r 0 and f in the interval p p by r x2 y2 hypot x y f atan2 y x displaystyle begin aligned r amp sqrt x 2 y 2 operatorname hypot x y varphi amp operatorname atan2 y x end aligned where hypot is the Pythagorean sum and atan2 is a common variation on the arctangent function defined as atan2 y x arctan yx if x gt 0arctan yx pif x lt 0 and y 0arctan yx pif x lt 0 and y lt 0p2if x 0 and y gt 0 p2if x 0 and y lt 0undefinedif x 0 and y 0 displaystyle operatorname atan2 y x begin cases arctan left frac y x right amp mbox if x gt 0 arctan left frac y x right pi amp mbox if x lt 0 mbox and y geq 0 arctan left frac y x right pi amp mbox if x lt 0 mbox and y lt 0 frac pi 2 amp mbox if x 0 mbox and y gt 0 frac pi 2 amp mbox if x 0 mbox and y lt 0 text undefined amp mbox if x 0 mbox and y 0 end cases If r is calculated first as above then this formula for f may be stated more simply using the arccosine function f arccos xr if y 0 and r 0 arccos xr if y lt 0undefinedif r 0 displaystyle varphi begin cases arccos left frac x r right amp mbox if y geq 0 mbox and r neq 0 arccos left frac x r right amp mbox if y lt 0 text undefined amp mbox if r 0 end cases Complex numbers An illustration of a complex number z plotted on the complex planeAn illustration of a complex number plotted on the complex plane using Euler s formula Every complex number can be represented as a point in the complex plane and can therefore be expressed by specifying either the point s Cartesian coordinates called rectangular or Cartesian form or the point s polar coordinates called polar form In polar form the distance and angle coordinates are often referred to as the number s magnitude and argument respectively Two complex numbers can be multiplied by adding their arguments and multiplying their magnitudes The complex number z can be represented in rectangular form as z x iy displaystyle z x iy where i is the imaginary unit or can alternatively be written in polar form as z r cos f isin f displaystyle z r cos varphi i sin varphi and from there by Euler s formula as z reif rexp if displaystyle z re i varphi r exp i varphi where e is Euler s number and f expressed in radians is the principal value of the complex number function arg applied to x iy To convert between the rectangular and polar forms of a complex number the conversion formulae given above can be used Equivalent are the cis and angle notations z rcis f r f displaystyle z r operatorname mathrm cis varphi r angle varphi For the operations of multiplication division exponentiation and root extraction of complex numbers it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form From the laws of exponentiation Multiplication r0eif0r1eif1 r0r1ei f0 f1 displaystyle r 0 e i varphi 0 r 1 e i varphi 1 r 0 r 1 e i left varphi 0 varphi 1 right Division r0eif0r1eif1 r0r1ei f0 f1 displaystyle frac r 0 e i varphi 0 r 1 e i varphi 1 frac r 0 r 1 e i varphi 0 varphi 1 Exponentiation De Moivre s formula reif n rneinf displaystyle left re i varphi right n r n e in varphi Root Extraction Principal root reifn rneifn displaystyle sqrt n re i varphi sqrt n r e i varphi over n Polar equation of a curveA curve on the Cartesian plane can be mapped into polar coordinates In this animation y sin 6 x 2 displaystyle y sin 6 cdot x 2 is mapped onto r sin 6 8 2 displaystyle r sin 6 cdot theta 2 Click on image for details The equation defining a plane curve expressed in polar coordinates is known as a polar equation In many cases such an equation can simply be specified by defining r as a function of f The resulting curve then consists of points of the form r f f and can be regarded as the graph of the polar function r Note that in contrast to Cartesian coordinates the independent variable f is the second entry in the ordered pair Different forms of symmetry can be deduced from the equation of a polar function r If r f r f the curve will be symmetrical about the horizontal 0 180 ray If r p f r f it will be symmetric about the vertical 90 270 ray If r f a r f it will be rotationally symmetric by a clockwise and counterclockwise about the pole Because of the circular nature of the polar coordinate system many curves can be described by a rather simple polar equation whereas their Cartesian form is much more intricate Among the best known of these curves are the polar rose Archimedean spiral lemniscate limacon and cardioid For the circle line and polar rose below it is understood that there are no restrictions on the domain and range of the curve Circle A circle with equation r f 1 The general equation for a circle with a center at r0 g displaystyle r 0 gamma and radius a is r2 2rr0cos f g r02 a2 displaystyle r 2 2rr 0 cos varphi gamma r 0 2 a 2 This can be simplified in various ways to conform to more specific cases such as the equation r f a displaystyle r varphi a for a circle with a center at the pole and radius a When r0 a or the origin lies on the circle the equation becomes r 2acos f g displaystyle r 2a cos varphi gamma In the general case the equation can be solved for r giving r r0cos f g a2 r02sin2 f g displaystyle r r 0 cos varphi gamma sqrt a 2 r 0 2 sin 2 varphi gamma The solution with a minus sign in front of the square root gives the same curve Line Radial lines those running through the pole are represented by the equation f g displaystyle varphi gamma where g displaystyle gamma is the angle of elevation of the line that is f arctan m displaystyle varphi arctan m where m displaystyle m is the slope of the line in the Cartesian coordinate system The non radial line that crosses the radial line f g displaystyle varphi gamma perpendicularly at the point r0 g displaystyle r 0 gamma has the equation r f r0sec f g displaystyle r varphi r 0 sec varphi gamma Otherwise stated r0 g displaystyle r 0 gamma is the point in which the tangent intersects the imaginary circle of radius r0 displaystyle r 0 Polar rose A polar rose with equation r f 2 sin 4f A polar rose is a mathematical curve that looks like a petaled flower and that can be expressed as a simple polar equation r f acos kf g0 displaystyle r varphi a cos left k varphi gamma 0 right for any constant g0 including 0 If k is an integer these equations will produce a k petaled rose if k is odd or a 2k petaled rose if k is even If k is rational but not an integer a rose like shape may form but with overlapping petals Note that these equations never define a rose with 2 6 10 14 etc petals The variable a directly represents the length or amplitude of the petals of the rose while k relates to their spatial frequency The constant g0 can be regarded as a phase angle Archimedean spiral One arm of an Archimedean spiral with equation r f f 2p for 0 lt f lt 6p The Archimedean spiral is a spiral discovered by Archimedes which can also be expressed as a simple polar equation It is represented by the equation r f a bf displaystyle r varphi a b varphi Changing the parameter a will turn the spiral while b controls the distance between the arms which for a given spiral is always constant The Archimedean spiral has two arms one for f gt 0 and one for f lt 0 The two arms are smoothly connected at the pole If a 0 taking the mirror image of one arm across the 90 270 line will yield the other arm This curve is notable as one of the first curves after the conic sections to be described in a mathematical treatise and as a prime example of a curve best defined by a polar equation Ellipse showing semi latus rectumConic sections A conic section with one focus on the pole and the other somewhere on the 0 ray so that the conic s major axis lies along the polar axis is given by r ℓ1 ecos f displaystyle r ell over 1 e cos varphi where e is the eccentricity and ℓ displaystyle ell is the semi latus rectum the perpendicular distance at a focus from the major axis to the curve If e gt 1 this equation defines a hyperbola if e 1 it defines a parabola and if e lt 1 it defines an ellipse The special case e 0 of the latter results in a circle of the radius ℓ displaystyle ell Quadratrix A quadratrix in the first quadrant x y is a curve with y r sin 8 equal to the fraction of the quarter circle with radius r determined by the radius through the curve point Since this fraction is 2r8p displaystyle frac 2r theta pi the curve is given by r 8 2r8psin 8 displaystyle rho theta frac 2r theta pi sin theta Intersection of two polar curves The graphs of two polar functions r f 8 displaystyle r f theta and r g 8 displaystyle r g theta have possible intersections of three types In the origin if the equations f 8 0 displaystyle f theta 0 and g 8 0 displaystyle g theta 0 have at least one solution each All the points g 8i 8i displaystyle g theta i theta i where 8i displaystyle theta i are solutions to the equation f 8 2kp g 8 displaystyle f theta 2k pi g theta where k displaystyle k is an integer All the points g 8i 8i displaystyle g theta i theta i where 8i displaystyle theta i are solutions to the equation f 8 2k 1 p g 8 displaystyle f theta 2k 1 pi g theta where k displaystyle k is an integer CalculusCalculus can be applied to equations expressed in polar coordinates The angular coordinate f is expressed in radians throughout this section which is the conventional choice when doing calculus Differential calculus Using x r cos f and y r sin f one can derive a relationship between derivatives in Cartesian and polar coordinates For a given function u x y it follows that by computing its total derivatives or rdudr r u xcos f r u ysin f x u x y u y dudf u xrsin f u yrcos f y u x x u y displaystyle begin aligned r frac du dr amp r frac partial u partial x cos varphi r frac partial u partial y sin varphi x frac partial u partial x y frac partial u partial y 2pt frac du d varphi amp frac partial u partial x r sin varphi frac partial u partial y r cos varphi y frac partial u partial x x frac partial u partial y end aligned Hence we have the following formula rddr x x y yddf y x x y displaystyle begin aligned r frac d dr amp x frac partial partial x y frac partial partial y 2pt frac d d varphi amp y frac partial partial x x frac partial partial y end aligned Using the inverse coordinates transformation an analogous reciprocal relationship can be derived between the derivatives Given a function u r f it follows that dudx u r r x u f f x dudy u r r y u f f y displaystyle begin aligned frac du dx amp frac partial u partial r frac partial r partial x frac partial u partial varphi frac partial varphi partial x 2pt frac du dy amp frac partial u partial r frac partial r partial y frac partial u partial varphi frac partial varphi partial y end aligned or dudx u rxx2 y2 u fyx2 y2 cos f u r 1rsin f u f dudy u ryx2 y2 u fxx2 y2 sin f u r 1rcos f u f displaystyle begin aligned frac du dx amp frac partial u partial r frac x sqrt x 2 y 2 frac partial u partial varphi frac y x 2 y 2 2pt amp cos varphi frac partial u partial r frac 1 r sin varphi frac partial u partial varphi 2pt frac du dy amp frac partial u partial r frac y sqrt x 2 y 2 frac partial u partial varphi frac x x 2 y 2 2pt amp sin varphi frac partial u partial r frac 1 r cos varphi frac partial u partial varphi end aligned Hence we have the following formulae ddx cos f r 1rsin f fddy sin f r 1rcos f f displaystyle begin aligned frac d dx amp cos varphi frac partial partial r frac 1 r sin varphi frac partial partial varphi 2pt frac d dy amp sin varphi frac partial partial r frac 1 r cos varphi frac partial partial varphi end aligned To find the Cartesian slope of the tangent line to a polar curve r f at any given point the curve is first expressed as a system of parametric equations x r f cos fy r f sin f displaystyle begin aligned x amp r varphi cos varphi y amp r varphi sin varphi end aligned Differentiating both equations with respect to f yields dxdf r f cos f r f sin fdydf r f sin f r f cos f displaystyle begin aligned frac dx d varphi amp r varphi cos varphi r varphi sin varphi 2pt frac dy d varphi amp r varphi sin varphi r varphi cos varphi end aligned Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point r f f dydx r f sin f r f cos fr f cos f r f sin f displaystyle frac dy dx frac r varphi sin varphi r varphi cos varphi r varphi cos varphi r varphi sin varphi For other useful formulas including divergence gradient and Laplacian in polar coordinates see curvilinear coordinates Integral calculus arc length The arc length length of a line segment defined by a polar function is found by the integration over the curve r f Let L denote this length along the curve starting from points A through to point B where these points correspond to f a and f b such that 0 lt b a lt 2p The length of L is given by the following integral L ab r f 2 dr f df 2df displaystyle L int a b sqrt left r varphi right 2 left tfrac dr varphi d varphi right 2 d varphi Integral calculus area The integration region R is bounded by the curve r f and the rays f a and f b Let R denote the region enclosed by a curve r f and the rays f a and f b where 0 lt b a 2p Then the area of R is 12 ab r f 2df displaystyle frac 1 2 int a b left r varphi right 2 d varphi The region R is approximated by n sectors here n 5 A planimeter which mechanically computes polar integrals This result can be found as follows First the interval a b is divided into n subintervals where n is some positive integer Thus Df the angle measure of each subinterval is equal to b a the total angle measure of the interval divided by n the number of subintervals For each subinterval i 1 2 n let fi be the midpoint of the subinterval and construct a sector with the center at the pole radius r fi central angle Df and arc length r fi Df The area of each constructed sector is therefore equal to r fi 2p Df2p 12 r fi 2Df displaystyle left r varphi i right 2 pi cdot frac Delta varphi 2 pi frac 1 2 left r varphi i right 2 Delta varphi Hence the total area of all of the sectors is i 1n12r fi 2Df displaystyle sum i 1 n tfrac 1 2 r varphi i 2 Delta varphi As the number of subintervals n is increased the approximation of the area improves Taking n the sum becomes the Riemann sum for the above integral A mechanical device that computes area integrals is the planimeter which measures the area of plane figures by tracing them out this replicates integration in polar coordinates by adding a joint so that the 2 element linkage effects Green s theorem converting the quadratic polar integral to a linear integral Generalization Using Cartesian coordinates an infinitesimal area element can be calculated as dA dx dy The substitution rule for multiple integrals states that when using other coordinates the Jacobian determinant of the coordinate conversion formula has to be considered J det x y r f x r x f y r y f cos f rsin fsin frcos f rcos2 f rsin2 f r displaystyle J det frac partial x y partial r varphi begin vmatrix frac partial x partial r amp frac partial x partial varphi 2pt frac partial y partial r amp frac partial y partial varphi end vmatrix begin vmatrix cos varphi amp r sin varphi sin varphi amp r cos varphi end vmatrix r cos 2 varphi r sin 2 varphi r Hence an area element in polar coordinates can be written as dA dxdy Jdrdf rdrdf displaystyle dA dx dy J dr d varphi r dr d varphi Now a function that is given in polar coordinates can be integrated as follows Rf x y dA ab 0r f f r f rdrdf displaystyle iint R f x y dA int a b int 0 r varphi f r varphi r dr d varphi Here R is the same region as above namely the region enclosed by a curve r f and the rays f a and f b The formula for the area of R is retrieved by taking f identically equal to 1 A graph of f x e x2 displaystyle f x e x 2 and the area between the function and the x displaystyle x axis which is equal to p displaystyle sqrt pi A more surprising application of this result yields the Gaussian integral e x2dx p displaystyle int infty infty e x 2 dx sqrt pi Vector calculus Vector calculus can also be applied to polar coordinates For a planar motion let r displaystyle mathbf r be the position vector r cos f r sin f with r and f depending on time t We define an orthonormal basis with three unit vectors radial transverse and normal directions The radial direction is defined by normalizing r displaystyle mathbf r r cos f sin f displaystyle hat mathbf r cos varphi sin varphi Radial and velocity directions span the plane of the motion whose normal direction is denoted k displaystyle hat mathbf k k v r displaystyle hat mathbf k hat mathbf v times hat mathbf r The transverse direction is perpendicular to both radial and normal directions f sin f cos f k r displaystyle hat boldsymbol varphi sin varphi cos varphi hat mathbf k times hat mathbf r Then r x y r cos f sin f rr r x y r cos f sin f rf sin f cos f r r rf f r x y r cos f sin f 2r f sin f cos f rf sin f cos f rf 2 cos f sin f r rf 2 r rf 2r f f r rf 2 r 1rddt r2f f displaystyle begin aligned mathbf r amp x y r cos varphi sin varphi r hat mathbf r 1 5ex dot mathbf r amp left dot x dot y right dot r cos varphi sin varphi r dot varphi sin varphi cos varphi dot r hat mathbf r r dot varphi hat boldsymbol varphi 1 5ex ddot mathbf r amp left ddot x ddot y right 1ex amp ddot r cos varphi sin varphi 2 dot r dot varphi sin varphi cos varphi r ddot varphi sin varphi cos varphi r dot varphi 2 cos varphi sin varphi 1ex amp left ddot r r dot varphi 2 right hat mathbf r left r ddot varphi 2 dot r dot varphi right hat boldsymbol varphi 1ex amp left ddot r r dot varphi 2 right hat mathbf r frac 1 r frac d dt left r 2 dot varphi right hat boldsymbol varphi end aligned This equation can be obtain by taking derivative of the function and derivatives of the unit basis vectors For a curve in 2D where the parameter is 8 displaystyle theta the previous equations simplify to r r 8 e rdrd8 drd8e r re 8d2rd82 d2rd82 r e r drd8e 8 displaystyle begin aligned mathbf r amp r theta hat mathbf e r 1ex frac d mathbf r d theta amp frac dr d theta hat mathbf e r r hat mathbf e theta 1ex frac d 2 mathbf r d theta 2 amp left frac d 2 r d theta 2 r right hat mathbf e r frac dr d theta hat mathbf e theta end aligned Centrifugal and Coriolis terms Position vector r always points radially from the origin Velocity vector v always tangent to the path of motion Acceleration vector a not parallel to the radial motion but offset by the angular and Coriolis accelerations nor tangent to the path but offset by the centripetal and radial accelerations Kinematic vectors in plane polar coordinates Notice the setup is not restricted to 2d space but a plane in any higher dimension The term rf 2 displaystyle r dot varphi 2 is sometimes referred to as the centripetal acceleration and the term 2r f displaystyle 2 dot r dot varphi as the Coriolis acceleration For example see Shankar Note these terms that appear when acceleration is expressed in polar coordinates are a mathematical consequence of differentiation they appear whenever polar coordinates are used In planar particle dynamics these accelerations appear when setting up Newton s second law of motion in a rotating frame of reference Here these extra terms are often called fictitious forces fictitious because they are simply a result of a change in coordinate frame That does not mean they do not exist rather they exist only in the rotating frame Inertial frame of reference S and instantaneous non inertial co rotating frame of reference S The co rotating frame rotates at angular rate W equal to the rate of rotation of the particle about the origin of S at the particular moment t Particle is located at vector position r t and unit vectors are shown in the radial direction to the particle from the origin and also in the direction of increasing angle ϕ normal to the radial direction These unit vectors need not be related to the tangent and normal to the path Also the radial distance r need not be related to the radius of curvature of the path Co rotating frame For a particle in planar motion one approach to attaching physical significance to these terms is based on the concept of an instantaneous co rotating frame of reference To define a co rotating frame first an origin is selected from which the distance r t to the particle is defined An axis of rotation is set up that is perpendicular to the plane of motion of the particle and passing through this origin Then at the selected moment t the rate of rotation of the co rotating frame W is made to match the rate of rotation of the particle about this axis df dt Next the terms in the acceleration in the inertial frame are related to those in the co rotating frame Let the location of the particle in the inertial frame be r t f t and in the co rotating frame be r t f t Because the co rotating frame rotates at the same rate as the particle df dt 0 The fictitious centrifugal force in the co rotating frame ismrW2 radially outward The velocity of the particle in the co rotating frame also is radially outward becausedf dt 0 Thefictitious Coriolis forcetherefore has a value 2m dr dt W pointed in the direction of increasingfonly Thus using these forces in Newton s second law we find F Fcf FCor mr displaystyle mathbf F mathbf F text cf mathbf F text Cor m ddot mathbf r where over dots represent derivatives with respect to time and F is the net real force as opposed to the fictitious forces In terms of components this vector equation becomes Fr mrW2 mr Ff 2mr W mrf displaystyle begin aligned F r mr Omega 2 amp m ddot r F varphi 2m dot r Omega amp mr ddot varphi end aligned which can be compared to the equations for the inertial frame Fr mr mrf 2Ff mrf 2mr f displaystyle begin aligned F r amp m ddot r mr dot varphi 2 F varphi amp mr ddot varphi 2m dot r dot varphi end aligned This comparison plus the recognition that by the definition of the co rotating frame at time t it has a rate of rotation W df dt shows that we can interpret the terms in the acceleration multiplied by the mass of the particle as found in the inertial frame as the negative of the centrifugal and Coriolis forces that would be seen in the instantaneous non inertial co rotating frame For general motion of a particle as opposed to simple circular motion the centrifugal and Coriolis forces in a particle s frame of reference commonly are referred to the instantaneous osculating circle of its motion not to a fixed center of polar coordinates For more detail see centripetal force Differential geometryIn the modern terminology of differential geometry polar coordinates provide coordinate charts for the differentiable manifold R2 0 0 the plane minus the origin In these coordinates the Euclidean metric tensor is given byds2 dr2 r2d82 displaystyle ds 2 dr 2 r 2 d theta 2 This can be seen via the change of variables formula for the metric tensor or by computing the differential forms dx dy via the exterior derivative of the 0 forms x r cos 8 y r sin 8 and substituting them in the Euclidean metric tensor ds2 dx2 dy2 An elementary proof of the formulaLet p1 x1 y1 r1 81 displaystyle p 1 x 1 y 1 r 1 theta 1 and p2 x2 y2 r2 82 displaystyle p 2 x 2 y 2 r 2 theta 2 be two points in the plane given by their cartesian and polar coordinates Then ds2 dx2 dy2 x2 x1 2 y2 y1 2 displaystyle ds 2 dx 2 dy 2 x 2 x 1 2 y 2 y 1 2 Since dx2 r2cos 82 r1cos 81 2 displaystyle dx 2 r 2 cos theta 2 r 1 cos theta 1 2 and dy2 r2sin 82 r1sin 81 2 displaystyle dy 2 r 2 sin theta 2 r 1 sin theta 1 2 we get that ds2 r22cos2 82 2r1r2cos 81cos 82 r12cos2 81 r22sin2 82 2r1r2sin 81sin 82 r12sin2 81 displaystyle ds 2 r 2 2 cos 2 theta 2 2r 1 r 2 cos theta 1 cos theta 2 r 1 2 cos 2 theta 1 r 2 2 sin 2 theta 2 2r 1 r 2 sin theta 1 sin theta 2 r 1 2 sin 2 theta 1 r22 cos2 82 sin2 82 r12 cos2 81 sin2 81 2r1r2 cos 81cos 82 sin 81sin 82 displaystyle r 2 2 cos 2 theta 2 sin 2 theta 2 r 1 2 cos 2 theta 1 sin 2 theta 1 2r 1 r 2 cos theta 1 cos theta 2 sin theta 1 sin theta 2 r12 r22 2r1r2 1 1 cos 81cos 82 sin 81sin 82 displaystyle r 1 2 r 2 2 2r 1 r 2 1 1 cos theta 1 cos theta 2 sin theta 1 sin theta 2 r2 r1 2 2r1r2 1 cos 81cos 82 sin 81sin 82 displaystyle r 2 r 1 2 2r 1 r 2 1 cos theta 1 cos theta 2 sin theta 1 sin theta 2 Now we use the trigonometric identity cos 82 81 cos 81cos 82 sin 81sin 82 displaystyle cos theta 2 theta 1 cos theta 1 cos theta 2 sin theta 1 sin theta 2 to proceed ds2 dr2 2r1r2 1 cos d8 displaystyle ds 2 dr 2 2r 1 r 2 1 cos d theta If the radial and angular quantities are near to each other and therefore near to a common quantity r displaystyle r and 8 displaystyle theta we have that r1r2 r2 displaystyle r 1 r 2 approx r 2 Moreover the cosine of d8 displaystyle d theta can be approximated with the Taylor series of the cosine up to linear terms cos d8 1 d822 displaystyle cos d theta approx 1 frac d theta 2 2 so that 1 cos d8 d822 displaystyle 1 cos d theta approx frac d theta 2 2 and 2r1r2 1 cos d8 2r2d822 r2d82 displaystyle 2r 1 r 2 1 cos d theta approx 2r 2 frac d theta 2 2 r 2 d theta 2 Therefore around an infinitesimally small domain of any point ds2 dr2 r2d82 displaystyle ds 2 dr 2 r 2 d theta 2 as stated An orthonormal frame with respect to this metric is given byer r e8 1r 8 displaystyle e r frac partial partial r quad e theta frac 1 r frac partial partial theta with dual coframeer dr e8 rd8 displaystyle e r dr quad e theta rd theta The connection form relative to this frame and the Levi Civita connection is given by the skew symmetric matrix of 1 formswij 0 d8d80 displaystyle omega i j begin pmatrix 0 amp d theta d theta amp 0 end pmatrix and hence the curvature form W dw w w vanishes Therefore as expected the punctured plane is a flat manifold Extensions in 3DThe polar coordinate system is extended into three dimensions with two different coordinate systems the cylindrical and spherical coordinate system ApplicationsPolar coordinates are two dimensional and thus they can be used only where point positions lie on a single two dimensional plane They are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point For instance the examples above show how elementary polar equations suffice to define curves such as the Archimedean spiral whose equation in the Cartesian coordinate system would be much more intricate Moreover many physical systems such as those concerned with bodies moving around a central point or with phenomena originating from a central point are simpler and more intuitive to model using polar coordinates The initial motivation for the introduction of the polar system was the study of circular and orbital motion Position and navigation Polar coordinates are used often in navigation as the destination or direction of travel can be given as an angle and distance from the object being considered For instance aircraft use a slightly modified version of the polar coordinates for navigation In this system the one generally used for any sort of navigation the 0 ray is generally called heading 360 and the angles continue in a clockwise direction rather than counterclockwise as in the mathematical system Heading 360 corresponds to magnetic north while headings 90 180 and 270 correspond to magnetic east south and west respectively Thus an aircraft traveling 5 nautical miles due east will be traveling 5 units at heading 90 read zero niner zero by air traffic control Modeling Systems displaying radial symmetry provide natural settings for the polar coordinate system with the central point acting as the pole A prime example of this usage is the groundwater flow equation when applied to radially symmetric wells Systems with a radial force are also good candidates for the use of the polar coordinate system These systems include gravitational fields which obey the inverse square law as well as systems with point sources such as radio antennas Radially asymmetric systems may also be modeled with polar coordinates For example a microphone s pickup pattern illustrates its proportional response to an incoming sound from a given direction and these patterns can be represented as polar curves The curve for a standard cardioid microphone the most common unidirectional microphone can be represented as r 0 5 0 5sin ϕ at its target design frequency The pattern shifts toward omnidirectionality at lower frequencies See alsoMathematics portalCurvilinear coordinates List of common coordinate transformations Log polar coordinates Polar decomposition Unit circleReferencesBrown Richard G 1997 Andrew M Gleason ed Advanced Mathematics Precalculus with Discrete Mathematics and Data Analysis Evanston Illinois McDougal Littell ISBN 0 395 77114 5 Friendly Michael August 24 2009 Milestones in the History of Thematic Cartography Statistical Graphics and Data Visualization PDF Archived from the original PDF on September 26 2018 Retrieved July 23 2016 King David A 2005 The Sacred Geography of Islam In Koetsier Teun Luc Bergmans eds Mathematics and the Divine A Historical Study Amsterdam Elsevier pp 162 78 ISBN 0 444 50328 5 King 2005 p 169 The calculations were as accurate as could be achieved under the limitations imposed by their assumption that the Earth was a perfect sphere Coolidge Julian 1952 The Origin of Polar Coordinates American Mathematical Monthly 59 2 Mathematical Association of America 78 85 doi 10 2307 2307104 JSTOR 2307104 Boyer C B 1949 Newton as an Originator of Polar Coordinates American Mathematical Monthly 56 2 Mathematical Association of America 73 78 doi 10 2307 2306162 JSTOR 2306162 Miller Jeff Earliest Known Uses of Some of the Words of Mathematics Retrieved 2006 09 10 Smith David Eugene 1925 History of Mathematics Vol II Boston Ginn and Co p 324 Serway Raymond A Jewett Jr John W 2005 Principles of Physics Brooks Cole Thomson Learning ISBN 0 534 49143 X Polar Coordinates and Graphing PDF 2006 04 13 Archived from the original PDF on August 22 2016 Retrieved 2006 09 22 Lee Theodore David Cohen David Sklar 2005 Precalculus With Unit Circle Trigonometry Fourth ed Thomson Brooks Cole ISBN 0 534 40230 5 Stewart Ian David Tall 1983 Complex Analysis the Hitchhiker s Guide to the Plane Cambridge University Press ISBN 0 521 28763 4 Torrence Bruce Follett Eve Torrence 1999 The Student s Introduction to Mathematica Cambridge University Press ISBN 0 521 59461 8 Smith Julius O 2003 Euler s Identity Mathematics of the Discrete Fourier Transform DFT W3K Publishing ISBN 0 9745607 0 7 Archived from the original on 2006 09 15 Retrieved 2006 09 22 Claeys Johan Polar coordinates Archived from the original on 2006 04 27 Retrieved 2006 05 25 N H Lucas P J Bunt amp J D Bedient 1976 Historical Roots of Elementary Mathematics page 113 Husch Lawrence S Areas Bounded by Polar Curves Archived from the original on 2000 03 01 Retrieved 2006 11 25 Lawrence S Husch Tangent Lines to Polar Graphs Archived from the original on 2019 11 21 Retrieved 2006 11 25 Ramamurti Shankar 1994 Principles of Quantum Mechanics 2nd ed Springer p 81 ISBN 0 306 44790 8 For the following discussion see John R Taylor 2005 Classical Mechanics University Science Books p 9 10 pp 358 359 ISBN 1 891389 22 X Santhi Sumrit Aircraft Navigation System Retrieved 2006 11 26 Emergency Procedures PDF Archived from the original PDF on 2013 06 03 Retrieved 2007 01 15 Eargle John 2005 Handbook of Recording Engineering Fourth ed Springer ISBN 0 387 28470 2 General references Adams Robert Christopher Essex 2013 Calculus a complete course Eighth ed Pearson Canada Inc ISBN 978 0 321 78107 9 Anton Howard Irl Bivens Stephen Davis 2002 Calculus Seventh ed Anton Textbooks Inc ISBN 0 471 38157 8 Finney Ross George Thomas Franklin Demana Bert Waits June 1994 Calculus Graphical Numerical Algebraic Single Variable Version ed Addison Wesley Publishing Co ISBN 0 201 55478 X External linksThe Wikibook Calculus has a page on the topic of Polar Integration Polar coordinates Encyclopedia of Mathematics EMS Press 2001 1994 Coordinate Converter converts between polar Cartesian and spherical coordinates Polar Coordinate System Dynamic Demo