
The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.
Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory.
Atomic radius
Note: All measurements given are in picometers (pm). For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length". It is often denoted by a0 and is approximately 53 pm. Hence, the values of atomic radii given here in picometers can be converted to atomic units by dividing by 53, to the level of accuracy of the data given in this table.
atomic number | symbol | name | empirical † | Calculated | van der Waals | Covalent (single bond) | Covalent (triple bond) | Metallic |
---|---|---|---|---|---|---|---|---|
1 | H | hydrogen | 25 | 53[citation needed] | 120 or 110 | 32 | ||
2 | He | helium | 120[citation needed] | 31 | 140 | 46 | ||
3 | Li | lithium | 145 | 167 | 182 or 181 | 133 | 152 | |
4 | Be | beryllium | 105 | 112 | 153 | 102 | 85 | 112 |
5 | B | boron | 85 | 87 | 192 | 85 | 73 | |
6 | C | carbon | 70 | 67 | 170 | 75 | 60 | |
7 | N | nitrogen | 65 | 56 | 155 | 71 | 54 | |
8 | O | oxygen | 60 | 48 | 152 | 63 | 53 | |
9 | F | fluorine | 50 | 42 | 147 | 64 | 53 | |
10 | Ne | neon | 160[citation needed] | 38 | 154 | 67 | ||
11 | Na | sodium | 180 | 190 | 227 | 155 | 186 | |
12 | Mg | magnesium | 150 | 145 | 173 | 139 | 127 | 160 |
13 | Al | aluminium | 125 | 118 | 184 | 126 | 111 | 143 |
14 | Si | silicon | 110 | 111 | 210 | 116 | 102 | |
15 | P | phosphorus | 100 | 98 | 180 | 111 | 94 | |
16 | S | sulfur | 100 | 88 | 180 | 103 | 95 | |
17 | Cl | chlorine | 100 | 79 | 175 | 99 | 93 | |
18 | Ar | argon | 71[citation needed] | 71 | 188 | 96 | 96 | |
19 | K | potassium | 220 | 243 | 275 | 196 | 227 | |
20 | Ca | calcium | 180 | 194 | 231 | 171 | 133 | 197 |
21 | Sc | scandium | 160 | 184 | 211[citation needed] | 148 | 114 | 162 b |
22 | Ti | titanium | 140 | 176 | 136 | 108 | 147 | |
23 | V | vanadium | 135 | 171 | 134 | 106 | 134 b | |
24 | Cr | chromium | 140 | 166 | 122 | 103 | 128 b | |
25 | Mn | manganese | 140 | 161 | 119 | 103 | 127 b | |
26 | Fe | iron | 140 | 156 | 116 | 102 | 126 b | |
27 | Co | cobalt | 135 | 152 | 111 | 96 | 125 b | |
28 | Ni | nickel | 135 | 149 | 163 | 110 | 101 | 124 b |
29 | Cu | copper | 135 | 145 | 140 | 112 | 120 | 128 b |
30 | Zn | zinc | 135 | 142 | 139 | 118 | 134 b | |
31 | Ga | gallium | 130 | 136 | 187 | 124 | 121 | 135 c |
32 | Ge | germanium | 125 | 125 | 211 | 121 | 114 | |
33 | As | arsenic | 115 | 114 | 185 | 121 | 106 | |
34 | Se | selenium | 115 | 103 | 190 | 116 | 107 | |
35 | Br | bromine | 115 | 94 | 185 or 183 | 114 | 110 | |
36 | Kr | krypton | 88 | 202 | 117 | 108 | ||
37 | Rb | rubidium | 235 | 265 | 303 | 210 | 248 | |
38 | Sr | strontium | 200 | 219 | 249 | 185 | 139 | 215 |
39 | Y | yttrium | 180 | 212 | 163 | 124 | 180 b | |
40 | Zr | zirconium | 155 | 206 | 154 | 121 | 160 | |
41 | Nb | niobium | 145 | 198 | 147 | 116 | 146 b | |
42 | Mo | molybdenum | 145 | 190 | 138 | 113 | 139 b | |
43 | Tc | technetium | 135 | 183 | 128 | 110 | 136 b | |
44 | Ru | ruthenium | 130 | 178 | 125 | 103 | 134 b | |
45 | Rh | rhodium | 135 | 173 | 125 | 106 | 134 b | |
46 | Pd | palladium | 140 | 169 | 163 | 120 | 112 | 137 b |
47 | Ag | silver | 160 | 165 | 172 | 128 | 137 | 144 b |
48 | Cd | cadmium | 155 | 161 | 158 | 136 | 151 b | |
49 | In | indium | 155 | 156 | 193 | 142 | 146 | 167 |
50 | Sn | tin | 145 | 145 | 217 | 140 | 132 | |
51 | Sb | antimony | 145 | 133 | 206 | 140 | 127 | |
52 | Te | tellurium | 140 | 123 | 206 | 136 | 121 | |
53 | I | iodine | 140 | 115 | 198 | 133 | 125 | |
54 | Xe | xenon | 108 | 216 | 131 | 122 | ||
55 | Cs | caesium | 260 | 298 | 343 | 232 | 265 | |
56 | Ba | barium | 215 | 253 | 268 | 196 | 149 | 222 |
57 | La | lanthanum | 195 | 226[citation needed] | 180 | 139 | 187 b | |
58 | Ce | cerium | 185 | 210[citation needed] | 163 | 131 | 181.8 c | |
59 | Pr | praseodymium | 185 | 247 | 176 | 128 | 182.4 c | |
60 | Nd | neodymium | 185 | 206 | 174 | 181.4 c | ||
61 | Pm | promethium | 185 | 205 | 173 | 183.4 c | ||
62 | Sm | samarium | 185 | 238 | 172 | 180.4 c | ||
63 | Eu | europium | 185 | 231 | 168 | 180.4 c | ||
64 | Gd | gadolinium | 180 | 233 | 169 | 132 | 180.4 c | |
65 | Tb | terbium | 175 | 225 | 168 | 177.3 c | ||
66 | Dy | dysprosium | 175 | 228 | 167 | 178.1 c | ||
67 | Ho | holmium | 175 | 226 | 166 | 176.2 c | ||
68 | Er | erbium | 175 | 226 | 165 | 176.1 c | ||
69 | Tm | thulium | 175 | 222 | 164 | 175.9 c | ||
70 | Yb | ytterbium | 175 | 222 | 170 | 176 c | ||
71 | Lu | lutetium | 175 | 217 | 162 | 131 | 173.8 c | |
72 | Hf | hafnium | 155 | 208 | 152 | 122 | 159 | |
73 | Ta | tantalum | 145 | 200 | 146 | 119 | 146 b | |
74 | W | tungsten | 135 | 193 | 137 | 115 | 139 b | |
75 | Re | rhenium | 135 | 188 | 131 | 110 | 137 b | |
76 | Os | osmium | 130 | 185 | 129 | 109 | 135 b | |
77 | Ir | iridium | 135 | 180 | 122 | 107 | 135.5 b | |
78 | Pt | platinum | 135 | 177 | 175 | 123 | 110 | 138.5 b |
79 | Au | gold | 135 | 174 | 166 | 124 | 123 | 144 b |
80 | Hg | mercury | 150 | 171 | 155 | 133 | 151 b | |
81 | Tl | thallium | 190 | 156 | 196 | 144 | 150 | 170 |
82 | Pb | lead | 180[citation needed] | 154 | 202 | 144 | 137 | |
83 | Bi | bismuth | 160 | 143 | 207 | 151 | 135 | |
84 | Po | polonium | 190 | 135 | 197 | 145 | 129 | |
85 | At | astatine | 127 | 202 | 147 | 138 | ||
86 | Rn | radon | 120 | 220 | 142 | 133 | ||
87 | Fr | francium | 348 | |||||
88 | Ra | radium | 215 | 283 | 201 | 159 | ||
89 | Ac | actinium | 195 | 186 | 140 | |||
90 | Th | thorium | 180 | 175 | 136 | 179 b | ||
91 | Pa | protactinium | 180 | 169 | 129 | 163 d | ||
92 | U | uranium | 175 | 186 | 170 | 118 | 156 e | |
93 | Np | neptunium | 175 | 171 | 116 | 155 e | ||
94 | Pu | plutonium | 175 | 172 | 159 e | |||
95 | Am | americium | 175 | 166 | 173 b | |||
96 | Cm | curium | 176[citation needed] | 166 | 174 b | |||
97 | Bk | berkelium | 170 b | |||||
98 | Cf | californium | 186±2 b | |||||
99 | Es | einsteinium | 186±2 b | |||||
100 | Fm | fermium | ||||||
101 | Md | mendelevium | ||||||
102 | No | nobelium | ||||||
103 | Lr | lawrencium | ||||||
104 | Rf | rutherfordium | 131 | |||||
105 | Db | dubnium | 126 | |||||
106 | Sg | seaborgium | 121 | |||||
107 | Bh | bohrium | 119 | |||||
108 | Hs | hassium | 118 | |||||
109 | Mt | meitnerium | 113 | |||||
110 | Ds | darmstadtium | 112 | |||||
111 | Rg | roentgenium | 118 | |||||
112 | Cn | copernicium | 130 | |||||
113 | Nh | nihonium | ||||||
114 | Fl | flerovium | ||||||
115 | Mc | moscovium | ||||||
116 | Lv | livermorium | ||||||
117 | Ts | tennessine | ||||||
118 | Og | oganesson |
See also
- Atomic radius
- Covalent radius (Single-, double- and triple-bond radii, up to the superheavy elements.)
- Ionic radius
Notes
- Difference between empirical and calculated data: Empirical data basically means, "originating in or based on observation or experience" or "relying on experience or observation alone often without due regard for system and theory data". It basically means that you measured it through physical observation, and a lot of experiments generating the same results. Although, note that the values are not calculated by a formula. However, often the empirical results then become an equation of estimation. Calculated data on the other hand are only based on theories. Such theoretical predictions are useful when there are no ways of measuring radii experimentally, if you want to predict the radius of an element that hasn't been discovered yet, or it has too short of a half-life.
- The radius of an atom is not a uniquely defined property and depends on the definition. Data derived from other sources with different assumptions cannot be compared.
- † to an accuracy of about 5 pm
- (b) 12 coordinate
- (c) gallium has an anomalous crystal structure
- (d) 10 coordinate
- (e) uranium, neptunium and plutonium have irregular structures
- Triple bond mean-square deviation 3pm.
References
- Cotton, F. A.; Wilkinson, G. (1988). Advanced Inorganic Chemistry (5th ed.). Wiley. p. 1385. ISBN 978-0-471-84997-1.
- J.C. Slater (1964). "Atomic Radii in Crystals". The Journal of Chemical Physics. 41 (10): 3199–3204. Bibcode:1964JChPh..41.3199S. doi:10.1063/1.1725697.
- A. Bondi (1964). "van der Waals Volumes and Radii". The Journal of Physical Chemistry. 68 (3): 441–451. doi:10.1021/j100785a001.
- Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. (2009-04-21). "Consistent van der Waals Radii for the Whole Main Group". The Journal of Physical Chemistry A. 113 (19). American Chemical Society (ACS): 5806–5812. Bibcode:2009JPCA..113.5806M. doi:10.1021/jp8111556. ISSN 1089-5639. PMC 3658832. PMID 19382751.
- E. Clementi; D.L.Raimondi; W.P. Reinhardt (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". The Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084.
- S. Riedel; P.Pyykkö, M. Patzschke; Patzschke, M (2005). "Triple-Bond Covalent Radii". Chem. Eur. J. 11 (12): 3511–3520. doi:10.1002/chem.200401299. PMID 15832398.
- Neon has van der Waal's radii thus its radii is the highest in its period
- "Empirical Definition & Meaning - Merriam-Webster".
Data is as quoted at http://www.webelements.com/ from these sources:
Covalent radii (single bond)
- R.T. Sanderson (1962). Chemical Periodicity. New York, USA: Reinhold.
- L.E. Sutton, ed. (1965). "Supplement 1956–1959, Special publication No. 18". Table of interatomic distances and configuration in molecules and ions. London, UK: Chemical Society.
- J.E. Huheey; E.A. Keiter & R.L. Keiter (1993). Inorganic Chemistry : Principles of Structure and Reactivity (4th ed.). New York, USA: HarperCollins. ISBN 0-06-042995-X.
- W.W. Porterfield (1984). Inorganic chemistry, a unified approach. Reading Massachusetts, USA: Addison Wesley Publishing Co. ISBN 0-201-05660-7.
- A.M. James & M.P. Lord (1992). Macmillan's Chemical and Physical Data. MacMillan. ISBN 0-333-51167-0.
Metallic radius
Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron Since the boundary is not a well defined physical entity there are various non equivalent definitions of atomic radius Depending on the definition the term may apply only to isolated atoms or also to atoms in condensed matter covalently bound in molecules or in ionized and excited states and its value may be obtained through experimental measurements or computed from theoretical models Under some definitions the value of the radius may depend on the atom s state and context Atomic radii vary in a predictable and explicable manner across the periodic table For instance the radii generally decrease rightward along each period row of the table from the alkali metals to the noble gases and increase down each group column The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period These trends of the atomic radii and of various other chemical and physical properties of the elements can be explained by the electron shell theory of the atom they provided important evidence for the development and confirmation of quantum theory Atomic radiusNote All measurements given are in picometers pm For more recent data on covalent radii see Covalent radius Just as atomic units are given in terms of the atomic mass unit approximately the proton mass the physically appropriate unit of length here is the Bohr radius which is the radius of a hydrogen atom The Bohr radius is consequently known as the atomic unit of length It is often denoted by a0 and is approximately 53 pm Hence the values of atomic radii given here in picometers can be converted to atomic units by dividing by 53 to the level of accuracy of the data given in this table Atomic radii up to zinc 30 atomic number symbol name empirical Calculated van der Waals Covalent single bond Covalent triple bond Metallic1 H hydrogen 25 53 citation needed 120 or 110 322 He helium 120 citation needed 31 140 463 Li lithium 145 167 182 or 181 133 1524 Be beryllium 105 112 153 102 85 1125 B boron 85 87 192 85 736 C carbon 70 67 170 75 607 N nitrogen 65 56 155 71 548 O oxygen 60 48 152 63 539 F fluorine 50 42 147 64 5310 Ne neon 160 citation needed 38 154 6711 Na sodium 180 190 227 155 18612 Mg magnesium 150 145 173 139 127 16013 Al aluminium 125 118 184 126 111 14314 Si silicon 110 111 210 116 10215 P phosphorus 100 98 180 111 9416 S sulfur 100 88 180 103 9517 Cl chlorine 100 79 175 99 9318 Ar argon 71 citation needed 71 188 96 9619 K potassium 220 243 275 196 22720 Ca calcium 180 194 231 171 133 19721 Sc scandium 160 184 211 citation needed 148 114 162 b22 Ti titanium 140 176 136 108 14723 V vanadium 135 171 134 106 134 b24 Cr chromium 140 166 122 103 128 b25 Mn manganese 140 161 119 103 127 b26 Fe iron 140 156 116 102 126 b27 Co cobalt 135 152 111 96 125 b28 Ni nickel 135 149 163 110 101 124 b29 Cu copper 135 145 140 112 120 128 b30 Zn zinc 135 142 139 118 134 b31 Ga gallium 130 136 187 124 121 135 c32 Ge germanium 125 125 211 121 11433 As arsenic 115 114 185 121 10634 Se selenium 115 103 190 116 10735 Br bromine 115 94 185 or 183 114 11036 Kr krypton 88 202 117 10837 Rb rubidium 235 265 303 210 24838 Sr strontium 200 219 249 185 139 21539 Y yttrium 180 212 163 124 180 b40 Zr zirconium 155 206 154 121 16041 Nb niobium 145 198 147 116 146 b42 Mo molybdenum 145 190 138 113 139 b43 Tc technetium 135 183 128 110 136 b44 Ru ruthenium 130 178 125 103 134 b45 Rh rhodium 135 173 125 106 134 b46 Pd palladium 140 169 163 120 112 137 b47 Ag silver 160 165 172 128 137 144 b48 Cd cadmium 155 161 158 136 151 b49 In indium 155 156 193 142 146 16750 Sn tin 145 145 217 140 13251 Sb antimony 145 133 206 140 12752 Te tellurium 140 123 206 136 12153 I iodine 140 115 198 133 12554 Xe xenon 108 216 131 12255 Cs caesium 260 298 343 232 26556 Ba barium 215 253 268 196 149 22257 La lanthanum 195 226 citation needed 180 139 187 b58 Ce cerium 185 210 citation needed 163 131 181 8 c59 Pr praseodymium 185 247 176 128 182 4 c60 Nd neodymium 185 206 174 181 4 c61 Pm promethium 185 205 173 183 4 c62 Sm samarium 185 238 172 180 4 c63 Eu europium 185 231 168 180 4 c64 Gd gadolinium 180 233 169 132 180 4 c65 Tb terbium 175 225 168 177 3 c66 Dy dysprosium 175 228 167 178 1 c67 Ho holmium 175 226 166 176 2 c68 Er erbium 175 226 165 176 1 c69 Tm thulium 175 222 164 175 9 c70 Yb ytterbium 175 222 170 176 c71 Lu lutetium 175 217 162 131 173 8 c72 Hf hafnium 155 208 152 122 15973 Ta tantalum 145 200 146 119 146 b74 W tungsten 135 193 137 115 139 b75 Re rhenium 135 188 131 110 137 b76 Os osmium 130 185 129 109 135 b77 Ir iridium 135 180 122 107 135 5 b78 Pt platinum 135 177 175 123 110 138 5 b79 Au gold 135 174 166 124 123 144 b80 Hg mercury 150 171 155 133 151 b81 Tl thallium 190 156 196 144 150 17082 Pb lead 180 citation needed 154 202 144 13783 Bi bismuth 160 143 207 151 13584 Po polonium 190 135 197 145 12985 At astatine 127 202 147 13886 Rn radon 120 220 142 13387 Fr francium 34888 Ra radium 215 283 201 15989 Ac actinium 195 186 14090 Th thorium 180 175 136 179 b91 Pa protactinium 180 169 129 163 d92 U uranium 175 186 170 118 156 e93 Np neptunium 175 171 116 155 e94 Pu plutonium 175 172 159 e95 Am americium 175 166 173 b96 Cm curium 176 citation needed 166 174 b97 Bk berkelium 170 b98 Cf californium 186 2 b99 Es einsteinium 186 2 b100 Fm fermium101 Md mendelevium102 No nobelium103 Lr lawrencium104 Rf rutherfordium 131105 Db dubnium 126106 Sg seaborgium 121107 Bh bohrium 119108 Hs hassium 118109 Mt meitnerium 113110 Ds darmstadtium 112111 Rg roentgenium 118112 Cn copernicium 130113 Nh nihonium114 Fl flerovium115 Mc moscovium116 Lv livermorium117 Ts tennessine118 Og oganessonSee alsoAtomic radius Covalent radius Single double and triple bond radii up to the superheavy elements Ionic radiusNotesDifference between empirical and calculated data Empirical data basically means originating in or based on observation or experience or relying on experience or observation alone often without due regard for system and theory data It basically means that you measured it through physical observation and a lot of experiments generating the same results Although note that the values are not calculated by a formula However often the empirical results then become an equation of estimation Calculated data on the other hand are only based on theories Such theoretical predictions are useful when there are no ways of measuring radii experimentally if you want to predict the radius of an element that hasn t been discovered yet or it has too short of a half life The radius of an atom is not a uniquely defined property and depends on the definition Data derived from other sources with different assumptions cannot be compared to an accuracy of about 5 pm b 12 coordinate c gallium has an anomalous crystal structure d 10 coordinate e uranium neptunium and plutonium have irregular structures Triple bond mean square deviation 3pm ReferencesCotton F A Wilkinson G 1988 Advanced Inorganic Chemistry 5th ed Wiley p 1385 ISBN 978 0 471 84997 1 J C Slater 1964 Atomic Radii in Crystals The Journal of Chemical Physics 41 10 3199 3204 Bibcode 1964JChPh 41 3199S doi 10 1063 1 1725697 A Bondi 1964 van der Waals Volumes and Radii The Journal of Physical Chemistry 68 3 441 451 doi 10 1021 j100785a001 Mantina Manjeera Chamberlin Adam C Valero Rosendo Cramer Christopher J Truhlar Donald G 2009 04 21 Consistent van der Waals Radii for the Whole Main Group The Journal of Physical Chemistry A 113 19 American Chemical Society ACS 5806 5812 Bibcode 2009JPCA 113 5806M doi 10 1021 jp8111556 ISSN 1089 5639 PMC 3658832 PMID 19382751 E Clementi D L Raimondi W P Reinhardt 1967 Atomic Screening Constants from SCF Functions II Atoms with 37 to 86 Electrons The Journal of Chemical Physics 47 4 1300 1307 Bibcode 1967JChPh 47 1300C doi 10 1063 1 1712084 S Riedel P Pyykko M Patzschke Patzschke M 2005 Triple Bond Covalent Radii Chem Eur J 11 12 3511 3520 doi 10 1002 chem 200401299 PMID 15832398 Neon has van der Waal s radii thus its radii is the highest in its period Empirical Definition amp Meaning Merriam Webster Data is as quoted at http www webelements com from these sources Covalent radii single bond R T Sanderson 1962 Chemical Periodicity New York USA Reinhold L E Sutton ed 1965 Supplement 1956 1959 Special publication No 18 Table of interatomic distances and configuration in molecules and ions London UK Chemical Society J E Huheey E A Keiter amp R L Keiter 1993 Inorganic Chemistry Principles of Structure and Reactivity 4th ed New York USA HarperCollins ISBN 0 06 042995 X W W Porterfield 1984 Inorganic chemistry a unified approach Reading Massachusetts USA Addison Wesley Publishing Co ISBN 0 201 05660 7 A M James amp M P Lord 1992 Macmillan s Chemical and Physical Data MacMillan ISBN 0 333 51167 0 Metallic radius Greenwood Norman N Earnshaw Alan 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann ISBN 978 0 08 037941 8