
Ionic radius, rion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 31 pm (0.3 Å) to over 200 pm (2 Å).
The concept can be extended to solvated ions in liquid solutions taking into consideration the solvation shell.
Trends
X− | AgX | |
---|---|---|
F | 464 | 492 |
Cl | 564 | 555 |
Br | 598 | 577 |
Unit cell parameters (in pm, equal to two M–X bond lengths) for sodium and silver halides. All compounds crystallize in the NaCl structure. |
Ions may be larger or smaller than the neutral atom, depending on the ion's electric charge. When an atom loses an electron to form a cation, the other electrons are more attracted to the nucleus, and the radius of the ion gets smaller. Similarly, when an electron is added to an atom, forming an anion, the added electron increases the size of the electron cloud by interelectronic repulsion.
The ionic radius is not a fixed property of a given ion, but varies with coordination number, spin state and other parameters. Nevertheless, ionic radius values are sufficiently transferable to allow periodic trends to be recognized. As with other types of atomic radius, ionic radii increase on descending a group. Ionic size (for the same ion) also increases with increasing coordination number, and an ion in a high-spin state will be larger than the same ion in a low-spin state. In general, ionic radius decreases with increasing positive charge and increases with increasing negative charge.
An "anomalous" ionic radius in a crystal is often a sign of significant covalent character in the bonding. No bond is completely ionic, and some supposedly "ionic" compounds, especially of the transition metals, are particularly covalent in character. This is illustrated by the unit cell parameters for sodium and silver halides in the table. On the basis of the fluorides, one would say that Ag+ is larger than Na+, but on the basis of the chlorides and bromides the opposite appears to be true. This is because the greater covalent character of the bonds in AgCl and AgBr reduces the bond length and hence the apparent ionic radius of Ag+, an effect which is not present in the halides of the more electropositive sodium, nor in silver fluoride in which the fluoride ion is relatively unpolarizable.
Determination
The distance between two ions in an ionic crystal can be determined by X-ray crystallography, which gives the lengths of the sides of the unit cell of a crystal. For example, the length of each edge of the unit cell of sodium chloride is found to be 564.02 pm. Each edge of the unit cell of sodium chloride may be considered to have the atoms arranged as Na+∙∙∙Cl−∙∙∙Na+, so the edge is twice the Na-Cl separation. Therefore, the distance between the Na+ and Cl− ions is half of 564.02 pm, which is 282.01 pm. However, although X-ray crystallography gives the distance between ions, it doesn't indicate where the boundary is between those ions, so it doesn't directly give ionic radii.
Landé estimated ionic radii by considering crystals in which the anion and cation have a large difference in size, such as LiI. The lithium ions are so much smaller than the iodide ions that the lithium fits into holes within the crystal lattice, allowing the iodide ions to touch. That is, the distance between two neighboring iodides in the crystal is assumed to be twice the radius of the iodide ion, which was deduced to be 214 pm. This value can be used to determine other radii. For example, the inter-ionic distance in RbI is 356 pm, giving 142 pm for the ionic radius of Rb+. In this way values for the radii of 8 ions were determined.
Wasastjerna estimated ionic radii by considering the relative volumes of ions as determined from electrical polarizability as determined by measurements of refractive index. These results were extended by Victor Goldschmidt. Both Wasastjerna and Goldschmidt used a value of 132 pm for the O2− ion.
Pauling used effective nuclear charge to proportion the distance between ions into anionic and a cationic radii. His data gives the O2− ion a radius of 140 pm.
A major review of crystallographic data led to the publication of revised ionic radii by Shannon. Shannon gives different radii for different coordination numbers, and for high and low spin states of the ions. To be consistent with Pauling's radii, Shannon has used a value of rion(O2−) = 140 pm; data using that value are referred to as "effective" ionic radii. However, Shannon also includes data based on rion(O2−) = 126 pm; data using that value are referred to as "crystal" ionic radii. Shannon states that "it is felt that crystal radii correspond more closely to the physical size of ions in a solid." The two sets of data are listed in the two tables below.
Tables
Number | Name | Symbol | 3− | 2− | 1− | 1+ | 2+ | 3+ | 4+ | 5+ | 6+ | 7+ | 8+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hydrogen | H | 208 | −4 (2) | |||||||||
3 | Lithium | Li | 90 | ||||||||||
4 | Beryllium | Be | 59 | ||||||||||
5 | Boron | B | 41 | ||||||||||
6 | Carbon | C | 30 | ||||||||||
7 | Nitrogen | N | 132 (4) | 30 | 27 | ||||||||
8 | Oxygen | O | 126 | ||||||||||
9 | Fluorine | F | 119 | 22 | |||||||||
11 | Sodium | Na | 116 | ||||||||||
12 | Magnesium | Mg | 86 | ||||||||||
13 | Aluminium | Al | 67.5 | ||||||||||
14 | Silicon | Si | 54 | ||||||||||
15 | Phosphorus | P | 58 | 52 | |||||||||
16 | Sulfur | S | 170 | 51 | 43 | ||||||||
17 | Chlorine | Cl | 167 | 26 (3py) | 41 | ||||||||
19 | Potassium | K | 152 | ||||||||||
20 | Calcium | Ca | 114 | ||||||||||
21 | Scandium | Sc | 88.5 | ||||||||||
22 | Titanium | Ti | 100 | 81 | 74.5 | ||||||||
23 | Vanadium | V | 93 | 78 | 72 | 68 | |||||||
24 | Chromium ls | Cr | 87 | 75.5 | 69 | 63 | 58 | ||||||
24 | Chromium hs | Cr | 94 | ||||||||||
25 | Manganese ls | Mn | 81 | 72 | 67 | 47 (4) | 39.5 (4) | 60 | |||||
25 | Manganese hs | Mn | 97 | 78.5 | |||||||||
26 | Iron ls | Fe | 75 | 69 | 72.5 | 39 (4) | |||||||
26 | Iron hs | Fe | 92 | 78.5 | |||||||||
27 | Cobalt ls | Co | 79 | 68.5 | |||||||||
27 | Cobalt hs | Co | 88.5 | 75 | 67 | ||||||||
28 | Nickel ls | Ni | 83 | 70 | 62 | ||||||||
28 | Nickel hs | Ni | 74 | ||||||||||
29 | Copper | Cu | 91 | 87 | 68 ls | ||||||||
30 | Zinc | Zn | 88 | ||||||||||
31 | Gallium | Ga | 76 | ||||||||||
32 | Germanium | Ge | 87 | 67 | |||||||||
33 | Arsenic | As | 72 | 60 | |||||||||
34 | Selenium | Se | 184 | 64 | 56 | ||||||||
35 | Bromine | Br | 182 | 73 (4sq) | 45 (3py) | 53 | |||||||
37 | Rubidium | Rb | 166 | ||||||||||
38 | Strontium | Sr | 132 | ||||||||||
39 | Yttrium | Y | 104 | ||||||||||
40 | Zirconium | Zr | 86 | ||||||||||
41 | Niobium | Nb | 86 | 82 | 78 | ||||||||
42 | Molybdenum | Mo | 83 | 79 | 75 | 73 | |||||||
43 | Technetium | Tc | 78.5 | 74 | 70 | ||||||||
44 | Ruthenium | Ru | 82 | 76 | 70.5 | 52 (4) | 50 (4) | ||||||
45 | Rhodium | Rh | 80.5 | 74 | 69 | ||||||||
46 | Palladium | Pd | 73 (2) | 100 | 90 | 75.5 | |||||||
47 | Silver | Ag | 129 | 108 | 89 | ||||||||
48 | Cadmium | Cd | 109 | ||||||||||
49 | Indium | In | 94 | ||||||||||
50 | Tin | Sn | 83 | ||||||||||
51 | Antimony | Sb | 90 | 74 | |||||||||
52 | Tellurium | Te | 207 | 111 | 70 | ||||||||
53 | Iodine | I | 206 | 109 | 67 | ||||||||
54 | Xenon | Xe | 62 | ||||||||||
55 | Caesium | Cs | 167 | ||||||||||
56 | Barium | Ba | 149 | ||||||||||
57 | Lanthanum | La | 117.2 | ||||||||||
58 | Cerium | Ce | 115 | 101 | |||||||||
59 | Praseodymium | Pr | 113 | 99 | |||||||||
60 | Neodymium | Nd | 143 (8) | 112.3 | |||||||||
61 | Promethium | Pm | 111 | ||||||||||
62 | Samarium | Sm | 136 (7) | 109.8 | |||||||||
63 | Europium | Eu | 131 | 108.7 | |||||||||
64 | Gadolinium | Gd | 107.8 | ||||||||||
65 | Terbium | Tb | 106.3 | 90 | |||||||||
66 | Dysprosium | Dy | 121 | 105.2 | |||||||||
67 | Holmium | Ho | 104.1 | ||||||||||
68 | Erbium | Er | 103 | ||||||||||
69 | Thulium | Tm | 117 | 102 | |||||||||
70 | Ytterbium | Yb | 116 | 100.8 | |||||||||
71 | Lutetium | Lu | 100.1 | ||||||||||
72 | Hafnium | Hf | 85 | ||||||||||
73 | Tantalum | Ta | 86 | 82 | 78 | ||||||||
74 | Tungsten | W | 80 | 76 | 74 | ||||||||
75 | Rhenium | Re | 77 | 72 | 69 | 67 | |||||||
76 | Osmium | Os | 77 | 71.5 | 68.5 | 66.5 | 53 (4) | ||||||
77 | Iridium | Ir | 82 | 76.5 | 71 | ||||||||
78 | Platinum | Pt | 94 | 76.5 | 71 | ||||||||
79 | Gold | Au | 151 | 99 | 71 | ||||||||
80 | Mercury | Hg | 133 | 116 | |||||||||
81 | Thallium | Tl | 164 | 102.5 | |||||||||
82 | Lead | Pb | 133 | 91.5 | |||||||||
83 | Bismuth | Bi | 117 | 90 | |||||||||
84 | Polonium | Po | 108 | 81 | |||||||||
85 | Astatine | At | 76 | ||||||||||
87 | Francium | Fr | 194 | ||||||||||
88 | Radium | Ra | 162 (8) | ||||||||||
89 | Actinium | Ac | 126 | ||||||||||
90 | Thorium | Th | 108 | ||||||||||
91 | Protactinium | Pa | 116 | 104 | 92 | ||||||||
92 | Uranium | U | 116.5 | 103 | 90 | 87 | |||||||
93 | Neptunium | Np | 124 | 115 | 101 | 89 | 86 | 85 | |||||
94 | Plutonium | Pu | 114 | 100 | 88 | 85 | |||||||
95 | Americium | Am | 140 (8) | 111.5 | 99 | ||||||||
96 | Curium | Cm | 111 | 99 | |||||||||
97 | Berkelium | Bk | 110 | 97 | |||||||||
98 | Californium | Cf | 109 | 96.1 | |||||||||
99 | Einsteinium | Es | 92.8 |
Number | Name | Symbol | 3− | 2− | 1− | 1+ | 2+ | 3+ | 4+ | 5+ | 6+ | 7+ | 8+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hydrogen | H | 139.9 | −18 (2) | |||||||||
3 | Lithium | Li | 76 | ||||||||||
4 | Beryllium | Be | 45 | ||||||||||
5 | Boron | B | 27 | ||||||||||
6 | Carbon | C | 16 | ||||||||||
7 | Nitrogen | N | 146 (4) | 16 | 13 | ||||||||
8 | Oxygen | O | 140 | ||||||||||
9 | Fluorine | F | 133 | 8 | |||||||||
11 | Sodium | Na | 102 | ||||||||||
12 | Magnesium | Mg | 72 | ||||||||||
13 | Aluminium | Al | 53.5 | ||||||||||
14 | Silicon | Si | 40 | ||||||||||
15 | Phosphorus | P | 212 | 44 | 38 | ||||||||
16 | Sulfur | S | 184 | 37 | 29 | ||||||||
17 | Chlorine | Cl | 181 | 12 (3py) | 27 | ||||||||
19 | Potassium | K | 138 | ||||||||||
20 | Calcium | Ca | 100 | ||||||||||
21 | Scandium | Sc | 74.5 | ||||||||||
22 | Titanium | Ti | 86 | 67 | 60.5 | ||||||||
23 | Vanadium | V | 79 | 64 | 58 | 54 | |||||||
24 | Chromium ls | Cr | 73 | 61.5 | 55 | 49 | 44 | ||||||
24 | Chromium hs | Cr | 80 | ||||||||||
25 | Manganese ls | Mn | 67 | 58 | 53 | 33 (4) | 25.5 (4) | 46 | |||||
25 | Manganese hs | Mn | 83 | 64.5 | |||||||||
26 | Iron ls | Fe | 61 | 55 | 58.5 | 25 (4) | |||||||
26 | Iron hs | Fe | 78 | 64.5 | |||||||||
27 | Cobalt ls | Co | 65 | 54.5 | |||||||||
27 | Cobalt hs | Co | 74.5 | 61 | 53 | ||||||||
28 | Nickel ls | Ni | 69 | 56 | 48 | ||||||||
28 | Nickel hs | Ni | 60 | ||||||||||
29 | Copper | Cu | 77 | 73 | 54 ls | ||||||||
30 | Zinc | Zn | 74 | ||||||||||
31 | Gallium | Ga | 62 | ||||||||||
32 | Germanium | Ge | 73 | 53 | |||||||||
33 | Arsenic | As | 58 | 46 | |||||||||
34 | Selenium | Se | 198 | 50 | 42 | ||||||||
35 | Bromine | Br | 196 | 59 (4sq) | 31 (3py) | 39 | |||||||
37 | Rubidium | Rb | 152 | ||||||||||
38 | Strontium | Sr | 118 | ||||||||||
39 | Yttrium | Y | 90 | ||||||||||
40 | Zirconium | Zr | 72 | ||||||||||
41 | Niobium | Nb | 72 | 68 | 64 | ||||||||
42 | Molybdenum | Mo | 69 | 65 | 61 | 59 | |||||||
43 | Technetium | Tc | 64.5 | 60 | 56 | ||||||||
44 | Ruthenium | Ru | 68 | 62 | 56.5 | 38 (4) | 36 (4) | ||||||
45 | Rhodium | Rh | 66.5 | 60 | 55 | ||||||||
46 | Palladium | Pd | 59 (2) | 86 | 76 | 61.5 | |||||||
47 | Silver | Ag | 115 | 94 | 75 | ||||||||
48 | Cadmium | Cd | 95 | ||||||||||
49 | Indium | In | 80 | ||||||||||
50 | Tin | Sn | 102 | 69 | |||||||||
51 | Antimony | Sb | 76 | 60 | |||||||||
52 | Tellurium | Te | 221 | 97 | 56 | ||||||||
53 | Iodine | I | 220 | 95 | 53 | ||||||||
54 | Xenon | Xe | 48 | ||||||||||
55 | Caesium | Cs | 167 | ||||||||||
56 | Barium | Ba | 135 | ||||||||||
57 | Lanthanum | La | 103.2 | ||||||||||
58 | Cerium | Ce | 101 | 87 | |||||||||
59 | Praseodymium | Pr | 99 | 85 | |||||||||
60 | Neodymium | Nd | 129 (8) | 98.3 | |||||||||
61 | Promethium | Pm | 97 | ||||||||||
62 | Samarium | Sm | 122 (7) | 95.8 | |||||||||
63 | Europium | Eu | 117 | 94.7 | |||||||||
64 | Gadolinium | Gd | 93.5 | ||||||||||
65 | Terbium | Tb | 92.3 | 76 | |||||||||
66 | Dysprosium | Dy | 107 | 91.2 | |||||||||
67 | Holmium | Ho | 90.1 | ||||||||||
68 | Erbium | Er | 89 | ||||||||||
69 | Thulium | Tm | 103 | 88 | |||||||||
70 | Ytterbium | Yb | 102 | 86.8 | |||||||||
71 | Lutetium | Lu | 86.1 | ||||||||||
72 | Hafnium | Hf | 71 | ||||||||||
73 | Tantalum | Ta | 72 | 68 | 64 | ||||||||
74 | Tungsten | W | 66 | 62 | 60 | ||||||||
75 | Rhenium | Re | 63 | 58 | 55 | 53 | |||||||
76 | Osmium | Os | 63 | 57.5 | 54.5 | 52.5 | 39 (4) | ||||||
77 | Iridium | Ir | 68 | 62.5 | 57 | ||||||||
78 | Platinum | Pt | 80 | 62.5 | 57 | ||||||||
79 | Gold | Au | 137 | 85 | 57 | ||||||||
80 | Mercury | Hg | 119 | 102 | |||||||||
81 | Thallium | Tl | 150 | 88.5 | |||||||||
82 | Lead | Pb | 119 | 77.5 | |||||||||
83 | Bismuth | Bi | 103 | 76 | |||||||||
84 | Polonium | Po | 223 | 94 | 67 | ||||||||
85 | Astatine | At | 62 | ||||||||||
87 | Francium | Fr | 180 | ||||||||||
88 | Radium | Ra | 148 (8) | ||||||||||
89 | Actinium | Ac | 106.5 (6) 122.0 (9) | ||||||||||
90 | Thorium | Th | 94 | ||||||||||
91 | Protactinium | Pa | 104 | 90 | 78 | ||||||||
92 | Uranium | U | 102.5 | 89 | 76 | 73 | |||||||
93 | Neptunium | Np | 110 | 101 | 87 | 75 | 72 | 71 | |||||
94 | Plutonium | Pu | 100 | 86 | 74 | 71 | |||||||
95 | Americium | Am | 126 (8) | 97.5 | 85 | ||||||||
96 | Curium | Cm | 97 | 85 | |||||||||
97 | Berkelium | Bk | 96 | 83 | |||||||||
98 | Californium | Cf | 95 | 82.1 | |||||||||
99 | Einsteinium | Es | 83.5 |
Soft-sphere model
Cation, M | RM | Anion, X | RX |
---|---|---|---|
Li+ | 109.4 | Cl− | 218.1 |
Na+ | 149.7 | Br− | 237.2 |
For many compounds, the model of ions as hard spheres does not reproduce the distance between ions, , to the accuracy with which it can be measured in crystals. One approach to improving the calculated accuracy is to model ions as "soft spheres" that overlap in the crystal. Because the ions overlap, their separation in the crystal will be less than the sum of their soft-sphere radii.
The relation between soft-sphere ionic radii, and
, and
, is given by
,
where is an exponent that varies with the type of crystal structure. In the hard-sphere model,
would be 1, giving
.
MX | Observed | Soft-sphere model |
---|---|---|
LiCl | 257.0 | 257.2 |
LiBr | 275.1 | 274.4 |
NaCl | 282.0 | 281.9 |
NaBr | 298.7 | 298.2 |
In the soft-sphere model, has a value between 1 and 2. For example, for crystals of group 1 halides with the sodium chloride structure, a value of 1.6667 gives good agreement with experiment. Some soft-sphere ionic radii are in the table. These radii are larger than the crystal radii given above (Li+, 90 pm; Cl−, 167 pm). Inter-ionic separations calculated with these radii give remarkably good agreement with experimental values. Some data are given in the table. Curiously, no theoretical justification for the equation containing
has been given.
Non-spherical ions
The concept of ionic radii is based on the assumption of a spherical ion shape. However, from a group-theoretical point of view the assumption is only justified for ions that reside on high-symmetry crystal lattice sites like Na and Cl in halite or Zn and S in sphalerite. A clear distinction can be made, when the point symmetry group of the respective lattice site is considered, which are the cubic groups Oh and Td in NaCl and ZnS. For ions on lower-symmetry sites significant deviations of their electron density from a spherical shape may occur. This holds in particular for ions on lattice sites of polar symmetry, which are the crystallographic point groups C1, C1h, Cn or Cnv, n = 2, 3, 4 or 6. A thorough analysis of the bonding geometry was recently carried out for pyrite-type compounds, where monovalent chalcogen ions reside on C3 lattice sites. It was found that chalcogen ions have to be modeled by ellipsoidal charge distributions with different radii along the symmetry axis and perpendicular to it.
See also
- Atomic orbital
- Atomic radii of the elements
- Born equation
- Covalent radius
- Electride
- Ionic potential
- Ionic radius ratio
- Pauling's rules
- Stokes radius
- Van der Waals radius
References
- On the basis of conventional ionic radii, Ag+ (129 pm) is indeed larger than Na+ (116 pm)
- Landé, A. (1920). "Über die Größe der Atome". Zeitschrift für Physik. 1 (3): 191–197. Bibcode:1920ZPhy....1..191L. doi:10.1007/BF01329165. S2CID 124873960. Archived from the original on 3 February 2013. Retrieved 1 June 2011.
- Wasastjerna, J. A. (1923). "On the radii of ions". Comm. Phys.-Math., Soc. Sci. Fenn. 1 (38): 1–25.
- Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze der Elemente. Skrifter Norske Videnskaps—Akad. Oslo, (I) Mat. Natur. This is an 8 volume set of books by Goldschmidt.
- Pauling, L. (1960). The Nature of the Chemical Bond (3rd Edn.). Ithaca, NY: Cornell University Press.
- R. D. Shannon (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallogr A. 32 (5): 751–767. Bibcode:1976AcCrA..32..751S. doi:10.1107/S0567739476001551.
- R. G. Haire, R. D. Baybarz: "Identification and Analysis of Einsteinium Sesquioxide by Electron Diffraction", in: Journal of Inorganic and Nuclear Chemistry, 1973, 35 (2), S. 489–496; doi:10.1016/0022-1902(73)80561-5.
- "Atomic and Ionic Radius". Chemistry LibreTexts. 3 October 2013.
- Sidey, V. (December 2022). "On the effective ionic radii for the tin(II) cation". Journal of Physics and Chemistry of Solids. 171 (110992). doi:10.1016/j.jpcs.2022.110992.
- Shannon, R. D. (1976), "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides", Acta Crystallogr. A, 32 (5): 751–67, Bibcode:1976AcCrA..32..751S, doi:10.1107/S0567739476001551.
- Deblonde, Gauthier J.-P.; Zavarin, Mavrik; Kersting, Annie B. (2021). "The coordination properties and ionic radius of actinium: A 120-year-old enigma". Coordination Chemistry Reviews. 446. Elsevier BV: 214130. doi:10.1016/j.ccr.2021.214130. ISSN 0010-8545.
- Lang, Peter F.; Smith, Barry C. (2010). "Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals". Dalton Transactions. 39 (33): 7786–7791. doi:10.1039/C0DT00401D. PMID 20664858.
- H. Bethe (1929). "Termaufspaltung in Kristallen". Annalen der Physik. 3 (2): 133–208. Bibcode:1929AnP...395..133B. doi:10.1002/andp.19293950202.
- M. Birkholz (1995). "Crystal-field induced dipoles in heteropolar crystals – I. concept". Z. Phys. B. 96 (3): 325–332. Bibcode:1995ZPhyB..96..325B. CiteSeerX 10.1.1.424.5632. doi:10.1007/BF01313054. S2CID 122527743.
- M. Birkholz (2014). "Modeling the Shape of Ions in Pyrite-Type Crystals". Crystals. 4 (3): 390–403. doi:10.3390/cryst4030390.
External links
- Aqueous Simple Electrolytes Solutions, H. L. Friedman, Felix Franks
Ionic radius rion is the radius of a monatomic ion in an ionic crystal structure Although neither atoms nor ions have sharp boundaries they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice Ionic radii are typically given in units of either picometers pm or angstroms A with 1 A 100 pm Typical values range from 31 pm 0 3 A to over 200 pm 2 A The concept can be extended to solvated ions in liquid solutions taking into consideration the solvation shell TrendsX AgXF 464 492Cl 564 555Br 598 577Unit cell parameters in pm equal to two M X bond lengths for sodium and silver halides All compounds crystallize in the NaCl structure Relative radii of atoms and ions The neutral atoms are colored gray cations red and anions blue Ions may be larger or smaller than the neutral atom depending on the ion s electric charge When an atom loses an electron to form a cation the other electrons are more attracted to the nucleus and the radius of the ion gets smaller Similarly when an electron is added to an atom forming an anion the added electron increases the size of the electron cloud by interelectronic repulsion The ionic radius is not a fixed property of a given ion but varies with coordination number spin state and other parameters Nevertheless ionic radius values are sufficiently transferable to allow periodic trends to be recognized As with other types of atomic radius ionic radii increase on descending a group Ionic size for the same ion also increases with increasing coordination number and an ion in a high spin state will be larger than the same ion in a low spin state In general ionic radius decreases with increasing positive charge and increases with increasing negative charge An anomalous ionic radius in a crystal is often a sign of significant covalent character in the bonding No bond is completely ionic and some supposedly ionic compounds especially of the transition metals are particularly covalent in character This is illustrated by the unit cell parameters for sodium and silver halides in the table On the basis of the fluorides one would say that Ag is larger than Na but on the basis of the chlorides and bromides the opposite appears to be true This is because the greater covalent character of the bonds in AgCl and AgBr reduces the bond length and hence the apparent ionic radius of Ag an effect which is not present in the halides of the more electropositive sodium nor in silver fluoride in which the fluoride ion is relatively unpolarizable DeterminationThe distance between two ions in an ionic crystal can be determined by X ray crystallography which gives the lengths of the sides of the unit cell of a crystal For example the length of each edge of the unit cell of sodium chloride is found to be 564 02 pm Each edge of the unit cell of sodium chloride may be considered to have the atoms arranged as Na Cl Na so the edge is twice the Na Cl separation Therefore the distance between the Na and Cl ions is half of 564 02 pm which is 282 01 pm However although X ray crystallography gives the distance between ions it doesn t indicate where the boundary is between those ions so it doesn t directly give ionic radii Front view of the unit cell of an LiI crystal using Shannon s crystal data Li 90 pm I 206 pm The iodide ions nearly touch but don t quite indicating that Lande s assumption is fairly good Lande estimated ionic radii by considering crystals in which the anion and cation have a large difference in size such as LiI The lithium ions are so much smaller than the iodide ions that the lithium fits into holes within the crystal lattice allowing the iodide ions to touch That is the distance between two neighboring iodides in the crystal is assumed to be twice the radius of the iodide ion which was deduced to be 214 pm This value can be used to determine other radii For example the inter ionic distance in RbI is 356 pm giving 142 pm for the ionic radius of Rb In this way values for the radii of 8 ions were determined Wasastjerna estimated ionic radii by considering the relative volumes of ions as determined from electrical polarizability as determined by measurements of refractive index These results were extended by Victor Goldschmidt Both Wasastjerna and Goldschmidt used a value of 132 pm for the O2 ion Pauling used effective nuclear charge to proportion the distance between ions into anionic and a cationic radii His data gives the O2 ion a radius of 140 pm A major review of crystallographic data led to the publication of revised ionic radii by Shannon Shannon gives different radii for different coordination numbers and for high and low spin states of the ions To be consistent with Pauling s radii Shannon has used a value of rion O2 140 pm data using that value are referred to as effective ionic radii However Shannon also includes data based on rion O2 126 pm data using that value are referred to as crystal ionic radii Shannon states that it is felt that crystal radii correspond more closely to the physical size of ions in a solid The two sets of data are listed in the two tables below TablesCrystal ionic radii in pm of elements as a function of ionic charge and spin ls low spin hs high spin Ions are 6 coordinate unless indicated differently in parentheses e g 146 4 for 4 coordinate N3 Number Name Symbol 3 2 1 1 2 3 4 5 6 7 8 1 Hydrogen H 208 4 2 3 Lithium Li 904 Beryllium Be 595 Boron B 416 Carbon C 307 Nitrogen N 132 4 30 278 Oxygen O 1269 Fluorine F 119 2211 Sodium Na 11612 Magnesium Mg 8613 Aluminium Al 67 514 Silicon Si 5415 Phosphorus P 58 5216 Sulfur S 170 51 4317 Chlorine Cl 167 26 3py 4119 Potassium K 15220 Calcium Ca 11421 Scandium Sc 88 522 Titanium Ti 100 81 74 523 Vanadium V 93 78 72 6824 Chromium ls Cr 87 75 5 69 63 5824 Chromium hs Cr 9425 Manganese ls Mn 81 72 67 47 4 39 5 4 6025 Manganese hs Mn 97 78 526 Iron ls Fe 75 69 72 5 39 4 26 Iron hs Fe 92 78 527 Cobalt ls Co 79 68 527 Cobalt hs Co 88 5 75 6728 Nickel ls Ni 83 70 6228 Nickel hs Ni 7429 Copper Cu 91 87 68 ls30 Zinc Zn 8831 Gallium Ga 7632 Germanium Ge 87 6733 Arsenic As 72 6034 Selenium Se 184 64 5635 Bromine Br 182 73 4sq 45 3py 5337 Rubidium Rb 16638 Strontium Sr 13239 Yttrium Y 10440 Zirconium Zr 8641 Niobium Nb 86 82 7842 Molybdenum Mo 83 79 75 7343 Technetium Tc 78 5 74 7044 Ruthenium Ru 82 76 70 5 52 4 50 4 45 Rhodium Rh 80 5 74 6946 Palladium Pd 73 2 100 90 75 547 Silver Ag 129 108 8948 Cadmium Cd 10949 Indium In 9450 Tin Sn 8351 Antimony Sb 90 7452 Tellurium Te 207 111 7053 Iodine I 206 109 6754 Xenon Xe 6255 Caesium Cs 16756 Barium Ba 14957 Lanthanum La 117 258 Cerium Ce 115 10159 Praseodymium Pr 113 9960 Neodymium Nd 143 8 112 361 Promethium Pm 11162 Samarium Sm 136 7 109 863 Europium Eu 131 108 764 Gadolinium Gd 107 865 Terbium Tb 106 3 9066 Dysprosium Dy 121 105 267 Holmium Ho 104 168 Erbium Er 10369 Thulium Tm 117 10270 Ytterbium Yb 116 100 871 Lutetium Lu 100 172 Hafnium Hf 8573 Tantalum Ta 86 82 7874 Tungsten W 80 76 7475 Rhenium Re 77 72 69 6776 Osmium Os 77 71 5 68 5 66 5 53 4 77 Iridium Ir 82 76 5 7178 Platinum Pt 94 76 5 7179 Gold Au 151 99 7180 Mercury Hg 133 11681 Thallium Tl 164 102 582 Lead Pb 133 91 583 Bismuth Bi 117 9084 Polonium Po 108 8185 Astatine At 7687 Francium Fr 19488 Radium Ra 162 8 89 Actinium Ac 12690 Thorium Th 10891 Protactinium Pa 116 104 9292 Uranium U 116 5 103 90 8793 Neptunium Np 124 115 101 89 86 8594 Plutonium Pu 114 100 88 8595 Americium Am 140 8 111 5 9996 Curium Cm 111 9997 Berkelium Bk 110 9798 Californium Cf 109 96 199 Einsteinium Es 92 8Effective ionic radii in pm of elements as a function of ionic charge and spin ls low spin hs high spin Ions are 6 coordinate unless indicated differently in parentheses e g 146 4 for 4 coordinate N3 Number Name Symbol 3 2 1 1 2 3 4 5 6 7 8 1 Hydrogen H 139 9 18 2 3 Lithium Li 764 Beryllium Be 455 Boron B 276 Carbon C 167 Nitrogen N 146 4 16 138 Oxygen O 1409 Fluorine F 133 811 Sodium Na 10212 Magnesium Mg 7213 Aluminium Al 53 514 Silicon Si 4015 Phosphorus P 212 44 3816 Sulfur S 184 37 2917 Chlorine Cl 181 12 3py 2719 Potassium K 13820 Calcium Ca 10021 Scandium Sc 74 522 Titanium Ti 86 67 60 523 Vanadium V 79 64 58 5424 Chromium ls Cr 73 61 5 55 49 4424 Chromium hs Cr 8025 Manganese ls Mn 67 58 53 33 4 25 5 4 4625 Manganese hs Mn 83 64 526 Iron ls Fe 61 55 58 5 25 4 26 Iron hs Fe 78 64 527 Cobalt ls Co 65 54 527 Cobalt hs Co 74 5 61 5328 Nickel ls Ni 69 56 4828 Nickel hs Ni 6029 Copper Cu 77 73 54 ls30 Zinc Zn 7431 Gallium Ga 6232 Germanium Ge 73 5333 Arsenic As 58 4634 Selenium Se 198 50 4235 Bromine Br 196 59 4sq 31 3py 3937 Rubidium Rb 15238 Strontium Sr 11839 Yttrium Y 9040 Zirconium Zr 7241 Niobium Nb 72 68 6442 Molybdenum Mo 69 65 61 5943 Technetium Tc 64 5 60 5644 Ruthenium Ru 68 62 56 5 38 4 36 4 45 Rhodium Rh 66 5 60 5546 Palladium Pd 59 2 86 76 61 547 Silver Ag 115 94 7548 Cadmium Cd 9549 Indium In 8050 Tin Sn 102 6951 Antimony Sb 76 6052 Tellurium Te 221 97 5653 Iodine I 220 95 5354 Xenon Xe 4855 Caesium Cs 16756 Barium Ba 13557 Lanthanum La 103 258 Cerium Ce 101 8759 Praseodymium Pr 99 8560 Neodymium Nd 129 8 98 361 Promethium Pm 9762 Samarium Sm 122 7 95 863 Europium Eu 117 94 764 Gadolinium Gd 93 565 Terbium Tb 92 3 7666 Dysprosium Dy 107 91 267 Holmium Ho 90 168 Erbium Er 8969 Thulium Tm 103 8870 Ytterbium Yb 102 86 871 Lutetium Lu 86 172 Hafnium Hf 7173 Tantalum Ta 72 68 6474 Tungsten W 66 62 6075 Rhenium Re 63 58 55 5376 Osmium Os 63 57 5 54 5 52 5 39 4 77 Iridium Ir 68 62 5 5778 Platinum Pt 80 62 5 5779 Gold Au 137 85 5780 Mercury Hg 119 10281 Thallium Tl 150 88 582 Lead Pb 119 77 583 Bismuth Bi 103 7684 Polonium Po 223 94 6785 Astatine At 6287 Francium Fr 18088 Radium Ra 148 8 89 Actinium Ac 106 5 6 122 0 9 90 Thorium Th 9491 Protactinium Pa 104 90 7892 Uranium U 102 5 89 76 7393 Neptunium Np 110 101 87 75 72 7194 Plutonium Pu 100 86 74 7195 Americium Am 126 8 97 5 8596 Curium Cm 97 8597 Berkelium Bk 96 8398 Californium Cf 95 82 199 Einsteinium Es 83 5Soft sphere modelSoft sphere ionic radii in pm of some ions Cation M RM Anion X RXLi 109 4 Cl 218 1Na 149 7 Br 237 2 For many compounds the model of ions as hard spheres does not reproduce the distance between ions dmx displaystyle d mx to the accuracy with which it can be measured in crystals One approach to improving the calculated accuracy is to model ions as soft spheres that overlap in the crystal Because the ions overlap their separation in the crystal will be less than the sum of their soft sphere radii The relation between soft sphere ionic radii rm displaystyle r m and rx displaystyle r x and dmx displaystyle d mx is given by dmxk rmk rxk displaystyle d mx k r m k r x k where k displaystyle k is an exponent that varies with the type of crystal structure In the hard sphere model k displaystyle k would be 1 giving dmx rm rx displaystyle d mx r m r x Comparison between observed and calculated ion separations in pm MX Observed Soft sphere modelLiCl 257 0 257 2LiBr 275 1 274 4NaCl 282 0 281 9NaBr 298 7 298 2 In the soft sphere model k displaystyle k has a value between 1 and 2 For example for crystals of group 1 halides with the sodium chloride structure a value of 1 6667 gives good agreement with experiment Some soft sphere ionic radii are in the table These radii are larger than the crystal radii given above Li 90 pm Cl 167 pm Inter ionic separations calculated with these radii give remarkably good agreement with experimental values Some data are given in the table Curiously no theoretical justification for the equation containing k displaystyle k has been given Non spherical ionsThe concept of ionic radii is based on the assumption of a spherical ion shape However from a group theoretical point of view the assumption is only justified for ions that reside on high symmetry crystal lattice sites like Na and Cl in halite or Zn and S in sphalerite A clear distinction can be made when the point symmetry group of the respective lattice site is considered which are the cubic groups Oh and Td in NaCl and ZnS For ions on lower symmetry sites significant deviations of their electron density from a spherical shape may occur This holds in particular for ions on lattice sites of polar symmetry which are the crystallographic point groups C1 C1h Cn or Cnv n 2 3 4 or 6 A thorough analysis of the bonding geometry was recently carried out for pyrite type compounds where monovalent chalcogen ions reside on C3 lattice sites It was found that chalcogen ions have to be modeled by ellipsoidal charge distributions with different radii along the symmetry axis and perpendicular to it See alsoAtomic orbital Atomic radii of the elements Born equation Covalent radius Electride Ionic potential Ionic radius ratio Pauling s rules Stokes radius Van der Waals radiusReferencesOn the basis of conventional ionic radii Ag 129 pm is indeed larger than Na 116 pm Lande A 1920 Uber die Grosse der Atome Zeitschrift fur Physik 1 3 191 197 Bibcode 1920ZPhy 1 191L doi 10 1007 BF01329165 S2CID 124873960 Archived from the original on 3 February 2013 Retrieved 1 June 2011 Wasastjerna J A 1923 On the radii of ions Comm Phys Math Soc Sci Fenn 1 38 1 25 Goldschmidt V M 1926 Geochemische Verteilungsgesetze der Elemente Skrifter Norske Videnskaps Akad Oslo I Mat Natur This is an 8 volume set of books by Goldschmidt Pauling L 1960 The Nature of the Chemical Bond 3rd Edn Ithaca NY Cornell University Press R D Shannon 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr A 32 5 751 767 Bibcode 1976AcCrA 32 751S doi 10 1107 S0567739476001551 R G Haire R D Baybarz Identification and Analysis of Einsteinium Sesquioxide by Electron Diffraction in Journal of Inorganic and Nuclear Chemistry 1973 35 2 S 489 496 doi 10 1016 0022 1902 73 80561 5 Atomic and Ionic Radius Chemistry LibreTexts 3 October 2013 Sidey V December 2022 On the effective ionic radii for the tin II cation Journal of Physics and Chemistry of Solids 171 110992 doi 10 1016 j jpcs 2022 110992 Shannon R D 1976 Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides Acta Crystallogr A 32 5 751 67 Bibcode 1976AcCrA 32 751S doi 10 1107 S0567739476001551 Deblonde Gauthier J P Zavarin Mavrik Kersting Annie B 2021 The coordination properties and ionic radius of actinium A 120 year old enigma Coordination Chemistry Reviews 446 Elsevier BV 214130 doi 10 1016 j ccr 2021 214130 ISSN 0010 8545 Lang Peter F Smith Barry C 2010 Ionic radii for Group 1 and Group 2 halide hydride fluoride oxide sulfide selenide and telluride crystals Dalton Transactions 39 33 7786 7791 doi 10 1039 C0DT00401D PMID 20664858 H Bethe 1929 Termaufspaltung in Kristallen Annalen der Physik 3 2 133 208 Bibcode 1929AnP 395 133B doi 10 1002 andp 19293950202 M Birkholz 1995 Crystal field induced dipoles in heteropolar crystals I concept Z Phys B 96 3 325 332 Bibcode 1995ZPhyB 96 325B CiteSeerX 10 1 1 424 5632 doi 10 1007 BF01313054 S2CID 122527743 M Birkholz 2014 Modeling the Shape of Ions in Pyrite Type Crystals Crystals 4 3 390 403 doi 10 3390 cryst4030390 External linksAqueous Simple Electrolytes Solutions H L Friedman Felix Franks