It has been suggested that Isometry (disambiguation) be merged into this article. (Discuss) Proposed since November 2024. |
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.
Introduction
Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection.
Isometries are often used in constructions where one space is embedded in another space. For instance, the completion of a metric space involves an isometry from into a quotient set of the space of Cauchy sequences on The original space is thus isometrically isomorphic to a subspace of a complete metric space, and it is usually identified with this subspace. Other embedding constructions show that every metric space is isometrically isomorphic to a closed subset of some normed vector space and that every complete metric space is isometrically isomorphic to a closed subset of some Banach space.
An isometric surjective linear operator on a Hilbert space is called a unitary operator.
Definition
Let and be metric spaces with metrics (e.g., distances) and A map is called an isometry or distance-preserving map if for any ,
An isometry is automatically injective; otherwise two distinct points, a and b, could be mapped to the same point, thereby contradicting the coincidence axiom of the metric d, i.e., if and only if . This proof is similar to the proof that an order embedding between partially ordered sets is injective. Clearly, every isometry between metric spaces is a topological embedding.
A global isometry, isometric isomorphism or congruence mapping is a bijective isometry. Like any other bijection, a global isometry has a function inverse. The inverse of a global isometry is also a global isometry.
Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y. The set of bijective isometries from a metric space to itself forms a group with respect to function composition, called the isometry group.
There is also the weaker notion of path isometry or arcwise isometry:
A path isometry or arcwise isometry is a map which preserves the lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective. This term is often abridged to simply isometry, so one should take care to determine from context which type is intended.
- Examples
- Any reflection, translation and rotation is a global isometry on Euclidean spaces. See also Euclidean group and Euclidean space § Isometries.
- The map in is a path isometry but not a (general) isometry. Note that unlike an isometry, this path isometry does not need to be injective.
Isometries between normed spaces
The following theorem is due to Mazur and Ulam.
- Definition: The midpoint of two elements x and y in a vector space is the vector 1/2(x + y).
Theorem — Let A : X → Y be a surjective isometry between normed spaces that maps 0 to 0 (Stefan Banach called such maps rotations) where note that A is not assumed to be a linear isometry. Then A maps midpoints to midpoints and is linear as a map over the real numbers . If X and Y are complex vector spaces then A may fail to be linear as a map over .
Linear isometry
Given two normed vector spaces and a linear isometry is a linear map that preserves the norms:
for all Linear isometries are distance-preserving maps in the above sense. They are global isometries if and only if they are surjective.
In an inner product space, the above definition reduces to
for all which is equivalent to saying that This also implies that isometries preserve inner products, as
- .
Linear isometries are not always unitary operators, though, as those require additionally that and (i.e. the domain and codomain coincide and defines a coisometry).
By the Mazur–Ulam theorem, any isometry of normed vector spaces over is affine.
A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a conformal linear transformation.
- Examples
- A linear map from to itself is an isometry (for the dot product) if and only if its matrix is unitary.
Manifold
An isometry of a manifold is any (smooth) mapping of that manifold into itself, or into another manifold that preserves the notion of distance between points. The definition of an isometry requires the notion of a metric on the manifold; a manifold with a (positive-definite) metric is a Riemannian manifold, one with an indefinite metric is a pseudo-Riemannian manifold. Thus, isometries are studied in Riemannian geometry.
A local isometry from one (pseudo-)Riemannian manifold to another is a map which pulls back the metric tensor on the second manifold to the metric tensor on the first. When such a map is also a diffeomorphism, such a map is called an isometry (or isometric isomorphism), and provides a notion of isomorphism ("sameness") in the category Rm of Riemannian manifolds.
Definition
Let and be two (pseudo-)Riemannian manifolds, and let be a diffeomorphism. Then is called an isometry (or isometric isomorphism) if
where denotes the pullback of the rank (0, 2) metric tensor by . Equivalently, in terms of the pushforward we have that for any two vector fields on (i.e. sections of the tangent bundle ),
If is a local diffeomorphism such that then is called a local isometry.
Properties
A collection of isometries typically form a group, the isometry group. When the group is a continuous group, the infinitesimal generators of the group are the Killing vector fields.
The Myers–Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth (differentiable). A second form of this theorem states that the isometry group of a Riemannian manifold is a Lie group.
Symmetric spaces are important examples of Riemannian manifolds that have isometries defined at every point.
Generalizations
- Given a positive real number ε, an ε-isometry or almost isometry (also called a Hausdorff approximation) is a map between metric spaces such that
- for one has and
- for any point there exists a point with
- That is, an ε-isometry preserves distances to within ε and leaves no element of the codomain further than ε away from the image of an element of the domain. Note that ε-isometries are not assumed to be continuous.
- The restricted isometry property characterizes nearly isometric matrices for sparse vectors.
- Quasi-isometry is yet another useful generalization.
- One may also define an element in an abstract unital C*-algebra to be an isometry:
- is an isometry if and only if
- Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse.
- On a pseudo-Euclidean space, the term isometry means a linear bijection preserving magnitude. See also Quadratic spaces.
See also
- Beckman–Quarles theorem
- Conformal map – Mathematical function that preserves angles
- The second dual of a Banach space as an isometric isomorphism
- Euclidean plane isometry
- Flat (geometry)
- Homeomorphism group
- Involution
- Isometry group
- Motion (geometry)
- Myers–Steenrod theorem
- 3D isometries that leave the origin fixed
- Partial isometry
- Scaling (geometry)
- Semidefinite embedding
- Space group
- Symmetry in mathematics
Footnotes
- "We shall find it convenient to use the word transformation in the special sense of a one-to-one correspondence among all points in the plane (or in space), that is, a rule for associating pairs of points, with the understanding that each pair has a first member P and a second member P' and that every point occurs as the first member of just one pair and also as the second member of just one pair... In particular, an isometry (or "congruent transformation," or "congruence") is a transformation which preserves length ..." — Coxeter (1969) p. 29
-
3.11 Any two congruent triangles are related by a unique isometry.— Coxeter (1969) p. 39
-
Let T be a transformation (possibly many-valued) of () into itself.
Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.
References
- Coxeter 1969, p. 46
3.51 Any direct isometry is either a translation or a rotation. Any opposite isometry is either a reflection or a glide reflection.
- Coxeter 1969, p. 29
- Coxeter 1969, p. 39
- Beckman, F.S.; Quarles, D.A. Jr. (1953). "On isometries of Euclidean spaces" (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415. JSTOR 2032415. MR 0058193.
- Le Donne, Enrico (2013-10-01). "Lipschitz and path isometric embeddings of metric spaces". Geometriae Dedicata. 166 (1): 47–66. doi:10.1007/s10711-012-9785-2. ISSN 1572-9168.
- Burago, Dmitri; Burago, Yurii; Ivanov, Sergeï (2001). "3 Constructions, §3.5 Arcwise isometries". A course in metric geometry. Graduate Studies in Mathematics. Vol. 33. Providence, RI: American Mathematical Society (AMS). pp. 86–87. ISBN 0-8218-2129-6.
- Narici & Beckenstein 2011, pp. 275–339.
- Wilansky 2013, pp. 21–26.
- Thomsen, Jesper Funch (2017). Lineær algebra [Linear Algebra]. Department of Mathematics (in Danish). Århus: Aarhus University. p. 125.
- Roweis, S.T.; Saul, L.K. (2000). "Nonlinear dimensionality reduction by locally linear embedding". Science. 290 (5500): 2323–2326. Bibcode:2000Sci...290.2323R. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150.
- Saul, Lawrence K.; Roweis, Sam T. (June 2003). "Think globally, fit locally: Unsupervised learning of nonlinear manifolds". Journal of Machine Learning Research. 4 (June): 119–155.
Quadratic optimisation of (page 135) such that
- Zhang, Zhenyue; Zha, Hongyuan (2004). "Principal manifolds and nonlinear dimension reduction via local tangent space alignment". SIAM Journal on Scientific Computing. 26 (1): 313–338. CiteSeerX 10.1.1.211.9957. doi:10.1137/s1064827502419154.
- Zhang, Zhenyue; Wang, Jing (2006). "MLLE: Modified locally linear embedding using multiple weights". In Schölkopf, B.; Platt, J.; Hoffman, T. (eds.). Advances in Neural Information Processing Systems. NIPS 2006. NeurIPS Proceedings. Vol. 19. pp. 1593–1600. ISBN 9781622760381.
It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold.
Bibliography
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
- Coxeter, H. S. M. (1969). Introduction to Geometry, Second edition. Wiley. ISBN 9780471504580.
- Lee, Jeffrey M. (2009). Manifolds and Differential Geometry. Providence, RI: American Mathematical Society. ISBN 978-0-8218-4815-9.
It has been suggested that Isometry disambiguation be merged into this article Discuss Proposed since November 2024 In mathematics an isometry or congruence or congruent transformation is a distance preserving transformation between metric spaces usually assumed to be bijective The word isometry is derived from the Ancient Greek ἴsos isos meaning equal and metron metron meaning measure If the transformation is from a metric space to itself it is a kind of geometric transformation known as a motion A composition of two opposite isometries is a direct isometry A reflection in a line is an opposite isometry like R1 or R2 on the image Translation T is a direct isometry a rigid motion IntroductionGiven a metric space loosely a set and a scheme for assigning distances between elements of the set an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space In a two dimensional or three dimensional Euclidean space two geometric figures are congruent if they are related by an isometry the isometry that relates them is either a rigid motion translation or rotation or a composition of a rigid motion and a reflection Isometries are often used in constructions where one space is embedded in another space For instance the completion of a metric space M displaystyle M involves an isometry from M displaystyle M into M displaystyle M a quotient set of the space of Cauchy sequences on M displaystyle M The original space M displaystyle M is thus isometrically isomorphic to a subspace of a complete metric space and it is usually identified with this subspace Other embedding constructions show that every metric space is isometrically isomorphic to a closed subset of some normed vector space and that every complete metric space is isometrically isomorphic to a closed subset of some Banach space An isometric surjective linear operator on a Hilbert space is called a unitary operator DefinitionLet X displaystyle X and Y displaystyle Y be metric spaces with metrics e g distances dX textstyle d X and dY textstyle d Y A map f X Y textstyle f colon X to Y is called an isometry or distance preserving map if for any a b X displaystyle a b in X dX a b dY f a f b displaystyle d X a b d Y left f a f b right An isometry is automatically injective otherwise two distinct points a and b could be mapped to the same point thereby contradicting the coincidence axiom of the metric d i e d a b 0 displaystyle d a b 0 if and only if a b displaystyle a b This proof is similar to the proof that an order embedding between partially ordered sets is injective Clearly every isometry between metric spaces is a topological embedding A global isometry isometric isomorphism or congruence mapping is a bijective isometry Like any other bijection a global isometry has a function inverse The inverse of a global isometry is also a global isometry Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y The set of bijective isometries from a metric space to itself forms a group with respect to function composition called the isometry group There is also the weaker notion of path isometry or arcwise isometry A path isometry or arcwise isometry is a map which preserves the lengths of curves such a map is not necessarily an isometry in the distance preserving sense and it need not necessarily be bijective or even injective This term is often abridged to simply isometry so one should take care to determine from context which type is intended ExamplesAny reflection translation and rotation is a global isometry on Euclidean spaces See also Euclidean group and Euclidean space Isometries The map x x displaystyle x mapsto x in R displaystyle mathbb R is a path isometry but not a general isometry Note that unlike an isometry this path isometry does not need to be injective Isometries between normed spacesThe following theorem is due to Mazur and Ulam Definition The midpoint of two elements x and y in a vector space is the vector 1 2 x y Theorem Let A X Y be a surjective isometry between normed spaces that maps 0 to 0 Stefan Banach called such maps rotations where note that A is not assumed to be a linear isometry Then A maps midpoints to midpoints and is linear as a map over the real numbers R displaystyle mathbb R If X and Y are complex vector spaces then A may fail to be linear as a map over C displaystyle mathbb C Linear isometry Given two normed vector spaces V displaystyle V and W displaystyle W a linear isometry is a linear map A V W displaystyle A V to W that preserves the norms Av W v V displaystyle Av W v V for all v V displaystyle v in V Linear isometries are distance preserving maps in the above sense They are global isometries if and only if they are surjective In an inner product space the above definition reduces to v v V Av Av W displaystyle langle v v rangle V langle Av Av rangle W for all v V displaystyle v in V which is equivalent to saying that A A IdV displaystyle A dagger A operatorname Id V This also implies that isometries preserve inner products as Au Av W u A Av V u v V displaystyle langle Au Av rangle W langle u A dagger Av rangle V langle u v rangle V Linear isometries are not always unitary operators though as those require additionally that V W displaystyle V W and AA IdV displaystyle AA dagger operatorname Id V i e the domain and codomain coincide and A displaystyle A defines a coisometry By the Mazur Ulam theorem any isometry of normed vector spaces over R displaystyle mathbb R is affine A linear isometry also necessarily preserves angles therefore a linear isometry transformation is a conformal linear transformation ExamplesA linear map from Cn displaystyle mathbb C n to itself is an isometry for the dot product if and only if its matrix is unitary ManifoldAn isometry of a manifold is any smooth mapping of that manifold into itself or into another manifold that preserves the notion of distance between points The definition of an isometry requires the notion of a metric on the manifold a manifold with a positive definite metric is a Riemannian manifold one with an indefinite metric is a pseudo Riemannian manifold Thus isometries are studied in Riemannian geometry A local isometry from one pseudo Riemannian manifold to another is a map which pulls back the metric tensor on the second manifold to the metric tensor on the first When such a map is also a diffeomorphism such a map is called an isometry or isometric isomorphism and provides a notion of isomorphism sameness in the category Rm of Riemannian manifolds Definition Let R M g displaystyle R M g and R M g displaystyle R M g be two pseudo Riemannian manifolds and let f R R displaystyle f R to R be a diffeomorphism Then f displaystyle f is called an isometry or isometric isomorphism if g f g displaystyle g f g where f g displaystyle f g denotes the pullback of the rank 0 2 metric tensor g displaystyle g by f displaystyle f Equivalently in terms of the pushforward f displaystyle f we have that for any two vector fields v w displaystyle v w on M displaystyle M i e sections of the tangent bundle TM displaystyle mathrm T M g v w g f v f w displaystyle g v w g left f v f w right If f displaystyle f is a local diffeomorphism such that g f g displaystyle g f g then f displaystyle f is called a local isometry Properties A collection of isometries typically form a group the isometry group When the group is a continuous group the infinitesimal generators of the group are the Killing vector fields The Myers Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth differentiable A second form of this theorem states that the isometry group of a Riemannian manifold is a Lie group Symmetric spaces are important examples of Riemannian manifolds that have isometries defined at every point GeneralizationsGiven a positive real number e an e isometry or almost isometry also called a Hausdorff approximation is a map f X Y displaystyle f colon X to Y between metric spaces such that for x x X displaystyle x x in X one has dY f x f x dX x x lt e displaystyle d Y f x f x d X x x lt varepsilon and for any point y Y displaystyle y in Y there exists a point x X displaystyle x in X with dY y f x lt e displaystyle d Y y f x lt varepsilon That is an e isometry preserves distances to within e and leaves no element of the codomain further than e away from the image of an element of the domain Note that e isometries are not assumed to be continuous The restricted isometry property characterizes nearly isometric matrices for sparse vectors Quasi isometry is yet another useful generalization One may also define an element in an abstract unital C algebra to be an isometry a A displaystyle a in mathfrak A is an isometry if and only if a a 1 displaystyle a cdot a 1 Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse On a pseudo Euclidean space the term isometry means a linear bijection preserving magnitude See also Quadratic spaces See alsoBeckman Quarles theorem Conformal map Mathematical function that preserves angles The second dual of a Banach space as an isometric isomorphism Euclidean plane isometry Flat geometry Homeomorphism group Involution Isometry group Motion geometry Myers Steenrod theorem 3D isometries that leave the origin fixed Partial isometry Scaling geometry Semidefinite embedding Space group Symmetry in mathematicsFootnotes We shall find it convenient to use the word transformation in the special sense of a one to one correspondence P P displaystyle P to P among all points in the plane or in space that is a rule for associating pairs of points with the understanding that each pair has a first member P and a second member P and that every point occurs as the first member of just one pair and also as the second member of just one pair In particular an isometry or congruent transformation or congruence is a transformation which preserves length Coxeter 1969 p 29 3 11 Any two congruent triangles are related by a unique isometry Coxeter 1969 p 39 Let T be a transformation possibly many valued of En displaystyle E n 2 n lt displaystyle 2 leq n lt infty into itself Let d p q displaystyle d p q be the distance between points p and q of En displaystyle E n and let Tp Tq be any images of p and q respectively If there is a length a gt 0 such that d Tp Tq a displaystyle d Tp Tq a whenever d p q a displaystyle d p q a then T is a Euclidean transformation of En displaystyle E n onto itself ReferencesCoxeter 1969 p 46 3 51 Any direct isometry is either a translation or a rotation Any opposite isometry is either a reflection or a glide reflection Coxeter 1969 p 29 Coxeter 1969 p 39 Beckman F S Quarles D A Jr 1953 On isometries of Euclidean spaces PDF Proceedings of the American Mathematical Society 4 5 810 815 doi 10 2307 2032415 JSTOR 2032415 MR 0058193 Le Donne Enrico 2013 10 01 Lipschitz and path isometric embeddings of metric spaces Geometriae Dedicata 166 1 47 66 doi 10 1007 s10711 012 9785 2 ISSN 1572 9168 Burago Dmitri Burago Yurii Ivanov Sergei 2001 3 Constructions 3 5 Arcwise isometries A course in metric geometry Graduate Studies in Mathematics Vol 33 Providence RI American Mathematical Society AMS pp 86 87 ISBN 0 8218 2129 6 Narici amp Beckenstein 2011 pp 275 339 Wilansky 2013 pp 21 26 Thomsen Jesper Funch 2017 Lineaer algebra Linear Algebra Department of Mathematics in Danish Arhus Aarhus University p 125 Roweis S T Saul L K 2000 Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2323 2326 Bibcode 2000Sci 290 2323R CiteSeerX 10 1 1 111 3313 doi 10 1126 science 290 5500 2323 PMID 11125150 Saul Lawrence K Roweis Sam T June 2003 Think globally fit locally Unsupervised learning of nonlinear manifolds Journal of Machine Learning Research 4 June 119 155 Quadratic optimisation of M I W I W displaystyle mathbf M I W top I W page 135 such that M YY displaystyle mathbf M equiv YY top Zhang Zhenyue Zha Hongyuan 2004 Principal manifolds and nonlinear dimension reduction via local tangent space alignment SIAM Journal on Scientific Computing 26 1 313 338 CiteSeerX 10 1 1 211 9957 doi 10 1137 s1064827502419154 Zhang Zhenyue Wang Jing 2006 MLLE Modified locally linear embedding using multiple weights In Scholkopf B Platt J Hoffman T eds Advances in Neural Information Processing Systems NIPS 2006 NeurIPS Proceedings Vol 19 pp 1593 1600 ISBN 9781622760381 It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold BibliographyRudin Walter 1991 Functional Analysis International Series in Pure and Applied Mathematics Vol 8 Second ed New York NY McGraw Hill Science Engineering Math ISBN 978 0 07 054236 5 OCLC 21163277 Narici Lawrence Beckenstein Edward 2011 Topological Vector Spaces Pure and applied mathematics Second ed Boca Raton FL CRC Press ISBN 978 1584888666 OCLC 144216834 Schaefer Helmut H Wolff Manfred P 1999 Topological Vector Spaces GTM Vol 8 Second ed New York NY Springer New York Imprint Springer ISBN 978 1 4612 7155 0 OCLC 840278135 Treves Francois 2006 1967 Topological Vector Spaces Distributions and Kernels Mineola N Y Dover Publications ISBN 978 0 486 45352 1 OCLC 853623322 Wilansky Albert 2013 Modern Methods in Topological Vector Spaces Mineola New York Dover Publications Inc ISBN 978 0 486 49353 4 OCLC 849801114 Coxeter H S M 1969 Introduction to Geometry Second edition Wiley ISBN 9780471504580 Lee Jeffrey M 2009 Manifolds and Differential Geometry Providence RI American Mathematical Society ISBN 978 0 8218 4815 9