![Topological space](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi9mL2ZmL1RvcG9sb2dpY2FsX3NwYWNlX2V4YW1wbGVzLnN2Zy8xNjAwcHgtVG9wb2xvZ2ljYWxfc3BhY2VfZXhhbXBsZXMuc3ZnLnBuZw==.png )
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.
Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spaces in their own right is called point-set topology or general topology.
History
Around 1735, Leonhard Euler discovered the formula relating the number of vertices (V), edges (E) and faces (F) of a convex polyhedron, and hence of a planar graph. The study and generalization of this formula, specifically by Cauchy (1789–1857) and L'Huilier (1750–1840), boosted the study of topology. In 1827, Carl Friedrich Gauss published General investigations of curved surfaces, which in section 3 defines the curved surface in a similar manner to the modern topological understanding: "A curved surface is said to possess continuous curvature at one of its points A, if the direction of all the straight lines drawn from A to points of the surface at an infinitesimal distance from A are deflected infinitesimally from one and the same plane passing through A."[non-primary source needed]
Yet, "until Riemann's work in the early 1850s, surfaces were always dealt with from a local point of view (as parametric surfaces) and topological issues were never considered". " Möbius and Jordan seem to be the first to realize that the main problem about the topology of (compact) surfaces is to find invariants (preferably numerical) to decide the equivalence of surfaces, that is, to decide whether two surfaces are homeomorphic or not."
The subject is clearly defined by Felix Klein in his "Erlangen Program" (1872): the geometry invariants of arbitrary continuous transformation, a kind of geometry. The term "topology" was introduced by Johann Benedict Listing in 1847, although he had used the term in correspondence some years earlier instead of previously used "Analysis situs". The foundation of this science, for a space of any dimension, was created by Henri Poincaré. His first article on this topic appeared in 1894. In the 1930s, James Waddell Alexander II and Hassler Whitney first expressed the idea that a surface is a topological space that is locally like a Euclidean plane.
Topological spaces were first defined by Felix Hausdorff in 1914 in his seminal "Principles of Set Theory". Metric spaces had been defined earlier in 1906 by Maurice Fréchet, though it was Hausdorff who popularised the term "metric space" (German: metrischer Raum).[better source needed]
Definitions
The utility of the concept of a topology is shown by the fact that there are several equivalent definitions of this mathematical structure. Thus one chooses the axiomatization suited for the application. The most commonly used is that in terms of open sets, but perhaps more intuitive is that in terms of neighbourhoods and so this is given first.
Definition via neighbourhoods
This axiomatization is due to Felix Hausdorff. Let be a (possibly empty) set. The elements of
are usually called points, though they can be any mathematical object. Let
be a function assigning to each
(point) in
a non-empty collection
of subsets of
The elements of
will be called neighbourhoods of
with respect to
(or, simply, neighbourhoods of
). The function
is called a neighbourhood topology if the axioms below are satisfied; and then
with
is called a topological space.
- If
is a neighbourhood of
(i.e.,
), then
In other words, each point of the set
belongs to every one of its neighbourhoods with respect to
.
- If
is a subset of
and includes a neighbourhood of
then
is a neighbourhood of
I.e., every superset of a neighbourhood of a point
is again a neighbourhood of
- The intersection of two neighbourhoods of
is a neighbourhood of
- Any neighbourhood
of
includes a neighbourhood
of
such that
is a neighbourhood of each point of
The first three axioms for neighbourhoods have a clear meaning. The fourth axiom has a very important use in the structure of the theory, that of linking together the neighbourhoods of different points of
A standard example of such a system of neighbourhoods is for the real line where a subset
of
is defined to be a neighbourhood of a real number
if it includes an open interval containing
Given such a structure, a subset of
is defined to be open if
is a neighbourhood of all points in
The open sets then satisfy the axioms given below in the next definition of a topological space. Conversely, when given the open sets of a topological space, the neighbourhoods satisfying the above axioms can be recovered by defining
to be a neighbourhood of
if
includes an open set
such that
Definition via open sets
A topology on a set X may be defined as a collection of subsets of X, called open sets and satisfying the following axioms:
- The empty set and
itself belong to
- Any arbitrary (finite or infinite) union of members of
belongs to
- The intersection of any finite number of members of
belongs to
As this definition of a topology is the most commonly used, the set of the open sets is commonly called a topology on
A subset is said to be closed in
if its complement
is an open set.
Examples of topologies
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlptTDFSdmNHOXNiMmRwWTJGc1gzTndZV05sWDJWNFlXMXdiR1Z6TG5OMlp5OHpOakJ3ZUMxVWIzQnZiRzluYVdOaGJGOXpjR0ZqWlY5bGVHRnRjR3hsY3k1emRtY3VjRzVuLnBuZw==.png)
- Given
the trivial or indiscrete topology on
is the family
consisting of only the two subsets of
required by the axioms forms a topology on
- Given
the family
of six subsets of
forms another topology of
- Given
the discrete topology on
is the power set of
which is the family
consisting of all possible subsets of
In this case the topological space
is called a discrete space.
- Given
the set of integers, the family
of all finite subsets of the integers plus
itself is not a topology, because (for example) the union of all finite sets not containing zero is not finite and therefore not a member of the family of finite sets. The union of all finite sets not containing zero is also not all of
and so it cannot be in
Definition via closed sets
Using de Morgan's laws, the above axioms defining open sets become axioms defining closed sets:
- The empty set and
are closed.
- The intersection of any collection of closed sets is also closed.
- The union of any finite number of closed sets is also closed.
Using these axioms, another way to define a topological space is as a set together with a collection
of closed subsets of
Thus the sets in the topology
are the closed sets, and their complements in
are the open sets.
Other definitions
There are many other equivalent ways to define a topological space: in other words the concepts of neighbourhood, or that of open or closed sets can be reconstructed from other starting points and satisfy the correct axioms.
Another way to define a topological space is by using the Kuratowski closure axioms, which define the closed sets as the fixed points of an operator on the power set of
A net is a generalisation of the concept of sequence. A topology is completely determined if for every net in the set of its accumulation points is specified.
Comparison of topologies
Many topologies can be defined on a set to form a topological space. When every open set of a topology is also open for a topology
one says that
is finer than
and
is coarser than
A proof that relies only on the existence of certain open sets will also hold for any finer topology, and similarly a proof that relies only on certain sets not being open applies to any coarser topology. The terms larger and smaller are sometimes used in place of finer and coarser, respectively. The terms stronger and weaker are also used in the literature, but with little agreement on the meaning, so one should always be sure of an author's convention when reading.
The collection of all topologies on a given fixed set forms a complete lattice: if
is a collection of topologies on
then the meet of
is the intersection of
and the join of
is the meet of the collection of all topologies on
that contain every member of
Continuous functions
A function between topological spaces is called continuous if for every
and every neighbourhood
of
there is a neighbourhood
of
such that
This relates easily to the usual definition in analysis. Equivalently,
is continuous if the inverse image of every open set is open. This is an attempt to capture the intuition that there are no "jumps" or "separations" in the function. A homeomorphism is a bijection that is continuous and whose inverse is also continuous. Two spaces are called homeomorphic if there exists a homeomorphism between them. From the standpoint of topology, homeomorphic spaces are essentially identical.
In category theory, one of the fundamental categories is Top, which denotes the category of topological spaces whose objects are topological spaces and whose morphisms are continuous functions. The attempt to classify the objects of this category (up to homeomorphism) by invariants has motivated areas of research, such as homotopy theory, homology theory, and K-theory.
Examples of topological spaces
A given set may have many different topologies. If a set is given a different topology, it is viewed as a different topological space. Any set can be given the discrete topology in which every subset is open. The only convergent sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every sequence and net in this topology converges to every point of the space. This example shows that in general topological spaces, limits of sequences need not be unique. However, often topological spaces must be Hausdorff spaces where limit points are unique.
There exist numerous topologies on any given finite set. Such spaces are called finite topological spaces. Finite spaces are sometimes used to provide examples or counterexamples to conjectures about topological spaces in general.
Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement is finite. This is the smallest T1 topology on any infinite set.
Any set can be given the cocountable topology, in which a set is defined as open if it is either empty or its complement is countable. When the set is uncountable, this topology serves as a counterexample in many situations.
The real line can also be given the lower limit topology. Here, the basic open sets are the half open intervals This topology on
is strictly finer than the Euclidean topology defined above; a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology. This example shows that a set may have many distinct topologies defined on it.
If is an ordinal number, then the set
may be endowed with the order topology generated by the intervals
and
where
and
are elements of
Every manifold has a natural topology since it is locally Euclidean. Similarly, every simplex and every simplicial complex inherits a natural topology from .
The Sierpiński space is the simplest non-discrete topological space. It has important relations to the theory of computation and semantics.
Topology from other topologies
It has been suggested that portions of this section be split out into articles titled Vietoris topology and Fell topology. (Discuss) (June 2024) |
Every subset of a topological space can be given the subspace topology in which the open sets are the intersections of the open sets of the larger space with the subset. For any indexed family of topological spaces, the product can be given the product topology, which is generated by the inverse images of open sets of the factors under the projection mappings. For example, in finite products, a basis for the product topology consists of all products of open sets. For infinite products, there is the additional requirement that in a basic open set, all but finitely many of its projections are the entire space.
A quotient space is defined as follows: if is a topological space and
is a set, and if
is a surjective function, then the quotient topology on
is the collection of subsets of
that have open inverse images under
In other words, the quotient topology is the finest topology on
for which
is continuous. A common example of a quotient topology is when an equivalence relation is defined on the topological space
The map
is then the natural projection onto the set of equivalence classes.
The Vietoris topology on the set of all non-empty subsets of a topological space named for Leopold Vietoris, is generated by the following basis: for every
-tuple
of open sets in
we construct a basis set consisting of all subsets of the union of the
that have non-empty intersections with each
The Fell topology on the set of all non-empty closed subsets of a locally compact Polish space is a variant of the Vietoris topology, and is named after mathematician James Fell. It is generated by the following basis: for every
-tuple
of open sets in
and for every compact set
the set of all subsets of
that are disjoint from
and have nonempty intersections with each
is a member of the basis.
Metric spaces
Metric spaces embody a metric, a precise notion of distance between points.
Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric. This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the same for all norms.
There are many ways of defining a topology on the set of real numbers. The standard topology on
is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces
can be given a topology. In the usual topology on
the basic open sets are the open balls. Similarly,
the set of complex numbers, and
have a standard topology in which the basic open sets are open balls.
Topology from algebraic structure
For any algebraic objects we can introduce the discrete topology, under which the algebraic operations are continuous functions. For any such structure that is not finite, we often have a natural topology compatible with the algebraic operations, in the sense that the algebraic operations are still continuous. This leads to concepts such as topological groups, topological vector spaces, topological rings and local fields.
Any local field has a topology native to it, and this can be extended to vector spaces over that field.
The Zariski topology is defined algebraically on the spectrum of a ring or an algebraic variety. On or
the closed sets of the Zariski topology are the solution sets of systems of polynomial equations.
Topological spaces with order structure
- Spectral: A space is spectral if and only if it is the prime spectrum of a ring (Hochster theorem).
- Specialization preorder: In a space the specialization preorder (or canonical preorder) is defined by
if and only if
where
denotes an operator satisfying the Kuratowski closure axioms.
Topology from other structure
If is a filter on a set
then
is a topology on
Many sets of linear operators in functional analysis are endowed with topologies that are defined by specifying when a particular sequence of functions converges to the zero function.
A linear graph has a natural topology that generalizes many of the geometric aspects of graphs with vertices and edges.
Outer space of a free group consists of the so-called "marked metric graph structures" of volume 1 on
Classification of topological spaces
Topological spaces can be broadly classified, up to homeomorphism, by their topological properties. A topological property is a property of spaces that is invariant under homeomorphisms. To prove that two spaces are not homeomorphic it is sufficient to find a topological property not shared by them. Examples of such properties include connectedness, compactness, and various separation axioms. For algebraic invariants see algebraic topology.
See also
- Complete Heyting algebra – The system of all open sets of a given topological space ordered by inclusion is a complete Heyting algebra.
- Compact space – Type of mathematical space
- Convergence space – Generalization of the notion of convergence that is found in general topology
- Exterior space
- Hausdorff space – Type of topological space
- Hilbert space – Type of topological vector space
- Hemicontinuity – Semicontinuity for set-valued functions
- Linear subspace – In mathematics, vector subspace
- Quasitopological space – a set X equipped with a function that associates to every compact Hausdorff space K a collection of maps K→C satisfying certain natural conditions
- Relatively compact subspace – Subset of a topological space whose closure is compact
- Space (mathematics) – Mathematical set with some added structure
Citations
- Schubert 1968, p. 13
- Sutherland, W. A. (1975). Introduction to metric and topological spaces. Oxford [England]: Clarendon Press. ISBN 0-19-853155-9. OCLC 1679102.
- Gauss 1827.
- Gallier & Xu 2013.
- J. Stillwell, Mathematics and its history
- "metric space". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
- Hausdorff, Felix (1914) [1914]. "Punktmengen in allgemeinen Räumen". Grundzüge der Mengenlehre. Göschens Lehrbücherei/Gruppe I: Reine und Angewandte Mathematik Serie (in German). Leipzig: Von Veit (published 2011). p. 211. ISBN 9783110989854. Retrieved 20 August 2022.
Unter einem m e t r i s c h e n R a u m e verstehen wir eine Menge E, [...].
- Brown 2006, section 2.1.
- Brown 2006, section 2.2.
- Armstrong 1983, definition 2.1.
- Armstrong 1983, theorem 2.6.
- Munkres, James R (2015). Topology. Pearson. pp. 317–319. ISBN 978-93-325-4953-1.
- Anderson, B. A.; Stewart, D. G. (1969). "
-complements of
topologies". Proceedings of the American Mathematical Society. 23: 77–81. doi:10.2307/2037491. JSTOR 2037491. MR 0244927.
- Culler, Marc; Vogtmann, Karen (1986). "Moduli of graphs and automorphisms of free groups" (PDF). Inventiones Mathematicae. 84 (1): 91–119. Bibcode:1986InMat..84...91C. doi:10.1007/BF01388734. S2CID 122869546.
Bibliography
- Armstrong, M. A. (1983) [1979]. Basic Topology. Undergraduate Texts in Mathematics. Springer. ISBN 0-387-90839-0.
- Bredon, Glen E., Topology and Geometry (Graduate Texts in Mathematics), Springer; 1st edition (October 17, 1997). ISBN 0-387-97926-3.
- Bourbaki, Nicolas; Elements of Mathematics: General Topology, Addison-Wesley (1966).
- Brown, Ronald (2006). Topology and Groupoids. Booksurge. ISBN 1-4196-2722-8. (3rd edition of differently titled books)
- Čech, Eduard; Point Sets, Academic Press (1969).
- Fulton, William, Algebraic Topology, (Graduate Texts in Mathematics), Springer; 1st edition (September 5, 1997). ISBN 0-387-94327-7.
- Gallier, Jean; Xu, Dianna (2013). A Guide to the Classification Theorem for Compact Surfaces. Springer.
- Gauss, Carl Friedrich (1827). General investigations of curved surfaces.
- Lipschutz, Seymour; Schaum's Outline of General Topology, McGraw-Hill; 1st edition (June 1, 1968). ISBN 0-07-037988-2.
- Munkres, James; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.
- Runde, Volker; A Taste of Topology (Universitext), Springer; 1st edition (July 6, 2005). ISBN 0-387-25790-X.
- Schubert, Horst (1968), Topology, Macdonald Technical & Scientific, ISBN 0-356-02077-0
- Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
- Vaidyanathaswamy, R. (1960). Set Topology. Chelsea Publishing Co. ISBN 0486404560.
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlpoTDFkcGEybHhkVzkwWlMxc2IyZHZMbk4yWnk4ek5IQjRMVmRwYTJseGRXOTBaUzFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
- "Topological space", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
In mathematics a topological space is roughly speaking a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance More specifically a topological space is a set whose elements are called points along with an additional structure called a topology which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness There are several equivalent definitions of a topology the most commonly used of which is the definition through open sets which is easier than the others to manipulate A topological space is the most general type of a mathematical space that allows for the definition of limits continuity and connectedness Common types of topological spaces include Euclidean spaces metric spaces and manifolds Although very general the concept of topological spaces is fundamental and used in virtually every branch of modern mathematics The study of topological spaces in their own right is called point set topology or general topology HistoryAround 1735 Leonhard Euler discovered the formula V E F 2 displaystyle V E F 2 relating the number of vertices V edges E and faces F of a convex polyhedron and hence of a planar graph The study and generalization of this formula specifically by Cauchy 1789 1857 and L Huilier 1750 1840 boosted the study of topology In 1827 Carl Friedrich Gauss published General investigations of curved surfaces which in section 3 defines the curved surface in a similar manner to the modern topological understanding A curved surface is said to possess continuous curvature at one of its points A if the direction of all the straight lines drawn from A to points of the surface at an infinitesimal distance from A are deflected infinitesimally from one and the same plane passing through A non primary source needed Yet until Riemann s work in the early 1850s surfaces were always dealt with from a local point of view as parametric surfaces and topological issues were never considered Mobius and Jordan seem to be the first to realize that the main problem about the topology of compact surfaces is to find invariants preferably numerical to decide the equivalence of surfaces that is to decide whether two surfaces are homeomorphic or not The subject is clearly defined by Felix Klein in his Erlangen Program 1872 the geometry invariants of arbitrary continuous transformation a kind of geometry The term topology was introduced by Johann Benedict Listing in 1847 although he had used the term in correspondence some years earlier instead of previously used Analysis situs The foundation of this science for a space of any dimension was created by Henri Poincare His first article on this topic appeared in 1894 In the 1930s James Waddell Alexander II and Hassler Whitney first expressed the idea that a surface is a topological space that is locally like a Euclidean plane Topological spaces were first defined by Felix Hausdorff in 1914 in his seminal Principles of Set Theory Metric spaces had been defined earlier in 1906 by Maurice Frechet though it was Hausdorff who popularised the term metric space German metrischer Raum better source needed DefinitionsThe utility of the concept of a topology is shown by the fact that there are several equivalent definitions of this mathematical structure Thus one chooses the axiomatization suited for the application The most commonly used is that in terms of open sets but perhaps more intuitive is that in terms of neighbourhoods and so this is given first Definition via neighbourhoods This axiomatization is due to Felix Hausdorff Let X displaystyle X be a possibly empty set The elements of X displaystyle X are usually called points though they can be any mathematical object Let N displaystyle mathcal N be a function assigning to each x displaystyle x point in X displaystyle X a non empty collection N x displaystyle mathcal N x of subsets of X displaystyle X The elements of N x displaystyle mathcal N x will be called neighbourhoods of x displaystyle x with respect to N displaystyle mathcal N or simply neighbourhoods of x displaystyle x The function N displaystyle mathcal N is called a neighbourhood topology if the axioms below are satisfied and then X displaystyle X with N displaystyle mathcal N is called a topological space If N displaystyle N is a neighbourhood of x displaystyle x i e N N x displaystyle N in mathcal N x then x N displaystyle x in N In other words each point of the set X displaystyle X belongs to every one of its neighbourhoods with respect to N displaystyle mathcal N If N displaystyle N is a subset of X displaystyle X and includes a neighbourhood of x displaystyle x then N displaystyle N is a neighbourhood of x displaystyle x I e every superset of a neighbourhood of a point x X displaystyle x in X is again a neighbourhood of x displaystyle x The intersection of two neighbourhoods of x displaystyle x is a neighbourhood of x displaystyle x Any neighbourhood N displaystyle N of x displaystyle x includes a neighbourhood M displaystyle M of x displaystyle x such that N displaystyle N is a neighbourhood of each point of M displaystyle M The first three axioms for neighbourhoods have a clear meaning The fourth axiom has a very important use in the structure of the theory that of linking together the neighbourhoods of different points of X displaystyle X A standard example of such a system of neighbourhoods is for the real line R displaystyle mathbb R where a subset N displaystyle N of R displaystyle mathbb R is defined to be a neighbourhood of a real number x displaystyle x if it includes an open interval containing x displaystyle x Given such a structure a subset U displaystyle U of X displaystyle X is defined to be open if U displaystyle U is a neighbourhood of all points in U displaystyle U The open sets then satisfy the axioms given below in the next definition of a topological space Conversely when given the open sets of a topological space the neighbourhoods satisfying the above axioms can be recovered by defining N displaystyle N to be a neighbourhood of x displaystyle x if N displaystyle N includes an open set U displaystyle U such that x U displaystyle x in U Definition via open sets A topology on a set X may be defined as a collection t displaystyle tau of subsets of X called open sets and satisfying the following axioms The empty set and X displaystyle X itself belong to t displaystyle tau Any arbitrary finite or infinite union of members of t displaystyle tau belongs to t displaystyle tau The intersection of any finite number of members of t displaystyle tau belongs to t displaystyle tau As this definition of a topology is the most commonly used the set t displaystyle tau of the open sets is commonly called a topology on X displaystyle X A subset C X displaystyle C subseteq X is said to be closed in X t displaystyle X tau if its complement X C displaystyle X setminus C is an open set Examples of topologies Let t displaystyle tau be denoted with the circles here are four examples and two non examples of topologies on the three point set 1 2 3 displaystyle 1 2 3 The bottom left example is not a topology because the union of 2 displaystyle 2 and 3 displaystyle 3 i e 2 3 displaystyle 2 3 is missing the bottom right example is not a topology because the intersection of 1 2 displaystyle 1 2 and 2 3 displaystyle 2 3 i e 2 displaystyle 2 is missing Given X 1 2 3 4 displaystyle X 1 2 3 4 the trivial or indiscrete topology on X displaystyle X is the family t 1 2 3 4 X displaystyle tau 1 2 3 4 varnothing X consisting of only the two subsets of X displaystyle X required by the axioms forms a topology on X displaystyle X Given X 1 2 3 4 displaystyle X 1 2 3 4 the family t 2 1 2 2 3 1 2 3 X displaystyle tau varnothing 2 1 2 2 3 1 2 3 X of six subsets of X displaystyle X forms another topology of X displaystyle X Given X 1 2 3 4 displaystyle X 1 2 3 4 the discrete topology on X displaystyle X is the power set of X displaystyle X which is the family t X displaystyle tau wp X consisting of all possible subsets of X displaystyle X In this case the topological space X t displaystyle X tau is called a discrete space Given X Z displaystyle X mathbb Z the set of integers the family t displaystyle tau of all finite subsets of the integers plus Z displaystyle mathbb Z itself is not a topology because for example the union of all finite sets not containing zero is not finite and therefore not a member of the family of finite sets The union of all finite sets not containing zero is also not all of Z displaystyle mathbb Z and so it cannot be in t displaystyle tau Definition via closed sets Using de Morgan s laws the above axioms defining open sets become axioms defining closed sets The empty set and X displaystyle X are closed The intersection of any collection of closed sets is also closed The union of any finite number of closed sets is also closed Using these axioms another way to define a topological space is as a set X displaystyle X together with a collection t displaystyle tau of closed subsets of X displaystyle X Thus the sets in the topology t displaystyle tau are the closed sets and their complements in X displaystyle X are the open sets Other definitions There are many other equivalent ways to define a topological space in other words the concepts of neighbourhood or that of open or closed sets can be reconstructed from other starting points and satisfy the correct axioms Another way to define a topological space is by using the Kuratowski closure axioms which define the closed sets as the fixed points of an operator on the power set of X displaystyle X A net is a generalisation of the concept of sequence A topology is completely determined if for every net in X displaystyle X the set of its accumulation points is specified Comparison of topologiesMany topologies can be defined on a set to form a topological space When every open set of a topology t1 displaystyle tau 1 is also open for a topology t2 displaystyle tau 2 one says that t2 displaystyle tau 2 is finer than t1 displaystyle tau 1 and t1 displaystyle tau 1 is coarser than t2 displaystyle tau 2 A proof that relies only on the existence of certain open sets will also hold for any finer topology and similarly a proof that relies only on certain sets not being open applies to any coarser topology The terms larger and smaller are sometimes used in place of finer and coarser respectively The terms stronger and weaker are also used in the literature but with little agreement on the meaning so one should always be sure of an author s convention when reading The collection of all topologies on a given fixed set X displaystyle X forms a complete lattice if F ta a A displaystyle F left tau alpha alpha in A right is a collection of topologies on X displaystyle X then the meet of F displaystyle F is the intersection of F displaystyle F and the join of F displaystyle F is the meet of the collection of all topologies on X displaystyle X that contain every member of F displaystyle F Continuous functionsA function f X Y displaystyle f X to Y between topological spaces is called continuous if for every x X displaystyle x in X and every neighbourhood N displaystyle N of f x displaystyle f x there is a neighbourhood M displaystyle M of x displaystyle x such that f M N displaystyle f M subseteq N This relates easily to the usual definition in analysis Equivalently f displaystyle f is continuous if the inverse image of every open set is open This is an attempt to capture the intuition that there are no jumps or separations in the function A homeomorphism is a bijection that is continuous and whose inverse is also continuous Two spaces are called homeomorphic if there exists a homeomorphism between them From the standpoint of topology homeomorphic spaces are essentially identical In category theory one of the fundamental categories is Top which denotes the category of topological spaces whose objects are topological spaces and whose morphisms are continuous functions The attempt to classify the objects of this category up to homeomorphism by invariants has motivated areas of research such as homotopy theory homology theory and K theory Examples of topological spacesA given set may have many different topologies If a set is given a different topology it is viewed as a different topological space Any set can be given the discrete topology in which every subset is open The only convergent sequences or nets in this topology are those that are eventually constant Also any set can be given the trivial topology also called the indiscrete topology in which only the empty set and the whole space are open Every sequence and net in this topology converges to every point of the space This example shows that in general topological spaces limits of sequences need not be unique However often topological spaces must be Hausdorff spaces where limit points are unique There exist numerous topologies on any given finite set Such spaces are called finite topological spaces Finite spaces are sometimes used to provide examples or counterexamples to conjectures about topological spaces in general Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement is finite This is the smallest T1 topology on any infinite set Any set can be given the cocountable topology in which a set is defined as open if it is either empty or its complement is countable When the set is uncountable this topology serves as a counterexample in many situations The real line can also be given the lower limit topology Here the basic open sets are the half open intervals a b displaystyle a b This topology on R displaystyle mathbb R is strictly finer than the Euclidean topology defined above a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology This example shows that a set may have many distinct topologies defined on it If g displaystyle gamma is an ordinal number then the set g 0 g displaystyle gamma 0 gamma may be endowed with the order topology generated by the intervals a b displaystyle alpha beta 0 b displaystyle 0 beta and a g displaystyle alpha gamma where a displaystyle alpha and b displaystyle beta are elements of g displaystyle gamma Every manifold has a natural topology since it is locally Euclidean Similarly every simplex and every simplicial complex inherits a natural topology from The Sierpinski space is the simplest non discrete topological space It has important relations to the theory of computation and semantics Topology from other topologies It has been suggested that portions of this section be split out into articles titled Vietoris topology and Fell topology Discuss June 2024 Every subset of a topological space can be given the subspace topology in which the open sets are the intersections of the open sets of the larger space with the subset For any indexed family of topological spaces the product can be given the product topology which is generated by the inverse images of open sets of the factors under the projection mappings For example in finite products a basis for the product topology consists of all products of open sets For infinite products there is the additional requirement that in a basic open set all but finitely many of its projections are the entire space A quotient space is defined as follows if X displaystyle X is a topological space and Y displaystyle Y is a set and if f X Y displaystyle f X to Y is a surjective function then the quotient topology on Y displaystyle Y is the collection of subsets of Y displaystyle Y that have open inverse images under f displaystyle f In other words the quotient topology is the finest topology on Y displaystyle Y for which f displaystyle f is continuous A common example of a quotient topology is when an equivalence relation is defined on the topological space X displaystyle X The map f displaystyle f is then the natural projection onto the set of equivalence classes The Vietoris topology on the set of all non empty subsets of a topological space X displaystyle X named for Leopold Vietoris is generated by the following basis for every n displaystyle n tuple U1 Un displaystyle U 1 ldots U n of open sets in X displaystyle X we construct a basis set consisting of all subsets of the union of the Ui displaystyle U i that have non empty intersections with each Ui displaystyle U i The Fell topology on the set of all non empty closed subsets of a locally compact Polish space X displaystyle X is a variant of the Vietoris topology and is named after mathematician James Fell It is generated by the following basis for every n displaystyle n tuple U1 Un displaystyle U 1 ldots U n of open sets in X displaystyle X and for every compact set K displaystyle K the set of all subsets of X displaystyle X that are disjoint from K displaystyle K and have nonempty intersections with each Ui displaystyle U i is a member of the basis Metric spaces Metric spaces embody a metric a precise notion of distance between points Every metric space can be given a metric topology in which the basic open sets are open balls defined by the metric This is the standard topology on any normed vector space On a finite dimensional vector space this topology is the same for all norms There are many ways of defining a topology on R displaystyle mathbb R the set of real numbers The standard topology on R displaystyle mathbb R is generated by the open intervals The set of all open intervals forms a base or basis for the topology meaning that every open set is a union of some collection of sets from the base In particular this means that a set is open if there exists an open interval of non zero radius about every point in the set More generally the Euclidean spaces Rn displaystyle mathbb R n can be given a topology In the usual topology on Rn displaystyle mathbb R n the basic open sets are the open balls Similarly C displaystyle mathbb C the set of complex numbers and Cn displaystyle mathbb C n have a standard topology in which the basic open sets are open balls Topology from algebraic structure For any algebraic objects we can introduce the discrete topology under which the algebraic operations are continuous functions For any such structure that is not finite we often have a natural topology compatible with the algebraic operations in the sense that the algebraic operations are still continuous This leads to concepts such as topological groups topological vector spaces topological rings and local fields Any local field has a topology native to it and this can be extended to vector spaces over that field The Zariski topology is defined algebraically on the spectrum of a ring or an algebraic variety On Rn displaystyle mathbb R n or Cn displaystyle mathbb C n the closed sets of the Zariski topology are the solution sets of systems of polynomial equations Topological spaces with order structure Spectral A space is spectral if and only if it is the prime spectrum of a ring Hochster theorem Specialization preorder In a space the specialization preorder or canonical preorder is defined by x y displaystyle x leq y if and only if cl x cl y displaystyle operatorname cl x subseteq operatorname cl y where cl displaystyle operatorname cl denotes an operator satisfying the Kuratowski closure axioms Topology from other structure If G displaystyle Gamma is a filter on a set X displaystyle X then G displaystyle varnothing cup Gamma is a topology on X displaystyle X Many sets of linear operators in functional analysis are endowed with topologies that are defined by specifying when a particular sequence of functions converges to the zero function A linear graph has a natural topology that generalizes many of the geometric aspects of graphs with vertices and edges Outer space of a free group Fn displaystyle F n consists of the so called marked metric graph structures of volume 1 on Fn displaystyle F n Classification of topological spacesTopological spaces can be broadly classified up to homeomorphism by their topological properties A topological property is a property of spaces that is invariant under homeomorphisms To prove that two spaces are not homeomorphic it is sufficient to find a topological property not shared by them Examples of such properties include connectedness compactness and various separation axioms For algebraic invariants see algebraic topology See alsoComplete Heyting algebra The system of all open sets of a given topological space ordered by inclusion is a complete Heyting algebra Compact space Type of mathematical space Convergence space Generalization of the notion of convergence that is found in general topology Exterior space Hausdorff space Type of topological space Hilbert space Type of topological vector space Hemicontinuity Semicontinuity for set valued functions Linear subspace In mathematics vector subspace Quasitopological space a set X equipped with a function that associates to every compact Hausdorff space K a collection of maps K C satisfying certain natural conditionsPages displaying wikidata descriptions as a fallback Relatively compact subspace Subset of a topological space whose closure is compact Space mathematics Mathematical set with some added structureCitationsSchubert 1968 p 13 Sutherland W A 1975 Introduction to metric and topological spaces Oxford England Clarendon Press ISBN 0 19 853155 9 OCLC 1679102 Gauss 1827 Gallier amp Xu 2013 J Stillwell Mathematics and its history metric space Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Hausdorff Felix 1914 1914 Punktmengen in allgemeinen Raumen Grundzuge der Mengenlehre Goschens Lehrbucherei Gruppe I Reine und Angewandte Mathematik Serie in German Leipzig Von Veit published 2011 p 211 ISBN 9783110989854 Retrieved 20 August 2022 Unter einem m e t r i s c h e n R a u m e verstehen wir eine Menge E Brown 2006 section 2 1 Brown 2006 section 2 2 Armstrong 1983 definition 2 1 Armstrong 1983 theorem 2 6 Munkres James R 2015 Topology Pearson pp 317 319 ISBN 978 93 325 4953 1 Anderson B A Stewart D G 1969 T1 displaystyle T 1 complements of T1 displaystyle T 1 topologies Proceedings of the American Mathematical Society 23 77 81 doi 10 2307 2037491 JSTOR 2037491 MR 0244927 Culler Marc Vogtmann Karen 1986 Moduli of graphs and automorphisms of free groups PDF Inventiones Mathematicae 84 1 91 119 Bibcode 1986InMat 84 91C doi 10 1007 BF01388734 S2CID 122869546 BibliographyArmstrong M A 1983 1979 Basic Topology Undergraduate Texts in Mathematics Springer ISBN 0 387 90839 0 Bredon Glen E Topology and Geometry Graduate Texts in Mathematics Springer 1st edition October 17 1997 ISBN 0 387 97926 3 Bourbaki Nicolas Elements of Mathematics General Topology Addison Wesley 1966 Brown Ronald 2006 Topology and Groupoids Booksurge ISBN 1 4196 2722 8 3rd edition of differently titled books Cech Eduard Point Sets Academic Press 1969 Fulton William Algebraic Topology Graduate Texts in Mathematics Springer 1st edition September 5 1997 ISBN 0 387 94327 7 Gallier Jean Xu Dianna 2013 A Guide to the Classification Theorem for Compact Surfaces Springer Gauss Carl Friedrich 1827 General investigations of curved surfaces Lipschutz Seymour Schaum s Outline of General Topology McGraw Hill 1st edition June 1 1968 ISBN 0 07 037988 2 Munkres James Topology Prentice Hall 2nd edition December 28 1999 ISBN 0 13 181629 2 Runde Volker A Taste of Topology Universitext Springer 1st edition July 6 2005 ISBN 0 387 25790 X Schubert Horst 1968 Topology Macdonald Technical amp Scientific ISBN 0 356 02077 0 Steen Lynn A and Seebach J Arthur Jr Counterexamples in Topology Holt Rinehart and Winston 1970 ISBN 0 03 079485 4 Vaidyanathaswamy R 1960 Set Topology Chelsea Publishing Co ISBN 0486404560 Willard Stephen 2004 General Topology Dover Publications ISBN 0 486 43479 6 External linksWikiquote has quotations related to Topological space Topological space Encyclopedia of Mathematics EMS Press 2001 1994