There are several conflicting usages of geosphere, variously defined. It may be taken as the collective name for the lithosphere, the hydrosphere, the cryosphere, and the atmosphere. The different collectives of the geosphere are able to exchange different mass and/or energy fluxes (the measurable amount of change). The exchange of these fluxes affects the balance of the different spheres of the geosphere. An example is how the soil acts as a part of the biosphere, while also acting as a source of flux exchange.
In Aristotelian physics, the term was applied to four spherical natural places, concentrically nested around the center of the Earth, as described in the lectures Physica and Meteorologica. They were believed to explain the motions of the four terrestrial elements: Earth, Water, Air, and Fire.
In modern texts and in Earth system science, geosphere refers to the solid parts of the Earth; it is used along with atmosphere, hydrosphere, and biosphere to describe the systems of the Earth (the interaction of these systems with the magnetosphere is sometimes listed). In that context, sometimes the term lithosphere is used instead of geosphere or solid Earth. The lithosphere, however, only refers to the uppermost layers of the solid Earth (oceanic and continental crustal rocks and uppermost mantle).
Since space exploration began, it has been observed that the extent of the ionosphere or plasmasphere is highly variable, and often much larger than previously appreciated, at times extending to the boundaries of the Earth's magnetosphere. This highly variable outer boundary of geogenic matter has been referred to as the "geopause" (or magnetopause), to suggest the relative scarcity of such matter beyond it, where the solar wind dominates.
References
- Williams, R.S., Jr., and Ferrigno, J.G. (eds.) (2012) Plate Figure 4 in State of the Earth’s cryosphere at the beginning of the 21st century–Glaciers, global snow cover, floating ice, and permafrost and periglacial environments: U.S. Geological Survey Professional Paper 1386–A.
- lorea, N.; Cotet, V.; Mocani, V. (April 2014). "Cycles of substances and energy at geospheres interface - fluxes conditioning the soil and life". Carpathian Journal of Earth and Environmental Sciences. 9 (2): 209–217.
- Allaby, A. and Allaby, M. (eds). (2003). A Dictionary of Earth Sciences. Oxford University Press. New York. 2nd edition. p. 320. ISBN 0198607601
- Siscoe, G. (1991). "Aristotle on the magnetosphere". Eos, Transactions, American Geophysical Union. 72 (7): 69. Bibcode:1991EOSTr..72...69S. doi:10.1029/90EO00050.
- Moore, T. E.; Delcourt, D. C. (1995). "The geopause". Reviews of Geophysics. 33 (2): 175. Bibcode:1995RvGeo..33..175M. doi:10.1029/95RG00872.
Look up geosphere in Wiktionary the free dictionary There are several conflicting usages of geosphere variously defined It may be taken as the collective name for the lithosphere the hydrosphere the cryosphere and the atmosphere The different collectives of the geosphere are able to exchange different mass and or energy fluxes the measurable amount of change The exchange of these fluxes affects the balance of the different spheres of the geosphere An example is how the soil acts as a part of the biosphere while also acting as a source of flux exchange In Aristotelian physics the term was applied to four spherical natural places concentrically nested around the center of the Earth as described in the lectures Physica and Meteorologica They were believed to explain the motions of the four terrestrial elements Earth Water Air and Fire In modern texts and in Earth system science geosphere refers to the solid parts of the Earth it is used along with atmosphere hydrosphere and biosphere to describe the systems of the Earth the interaction of these systems with the magnetosphere is sometimes listed In that context sometimes the term lithosphere is used instead of geosphere or solid Earth The lithosphere however only refers to the uppermost layers of the solid Earth oceanic and continental crustal rocks and uppermost mantle Since space exploration began it has been observed that the extent of the ionosphere or plasmasphere is highly variable and often much larger than previously appreciated at times extending to the boundaries of the Earth s magnetosphere This highly variable outer boundary of geogenic matter has been referred to as the geopause or magnetopause to suggest the relative scarcity of such matter beyond it where the solar wind dominates ReferencesWilliams R S Jr and Ferrigno J G eds 2012 Plate Figure 4 in State of the Earth s cryosphere at the beginning of the 21st century Glaciers global snow cover floating ice and permafrost and periglacial environments U S Geological Survey Professional Paper 1386 A lorea N Cotet V Mocani V April 2014 Cycles of substances and energy at geospheres interface fluxes conditioning the soil and life Carpathian Journal of Earth and Environmental Sciences 9 2 209 217 Allaby A and Allaby M eds 2003 A Dictionary of Earth Sciences Oxford University Press New York 2nd edition p 320 ISBN 0198607601 Siscoe G 1991 Aristotle on the magnetosphere Eos Transactions American Geophysical Union 72 7 69 Bibcode 1991EOSTr 72 69S doi 10 1029 90EO00050 Moore T E Delcourt D C 1995 The geopause Reviews of Geophysics 33 2 175 Bibcode 1995RvGeo 33 175M doi 10 1029 95RG00872 This geophysics related article is a stub You can help Wikipedia by expanding it vte