![Connected (topology)](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi8xLzE2L1NpbXBseV9jb25uZWN0ZWQlMkNfY29ubmVjdGVkJTJDX2FuZF9ub24tY29ubmVjdGVkX3NwYWNlcy5zdmcvMTYwMHB4LVNpbXBseV9jb25uZWN0ZWQlMkNfY29ubmVjdGVkJTJDX2FuZF9ub24tY29ubmVjdGVkX3NwYWNlcy5zdmcucG5n.png )
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.
A subset of a topological space is a connected set if it is a connected space when viewed as a subspace of .
Some related but stronger conditions are path connected, simply connected, and -connected. Another related notion is locally connected, which neither implies nor follows from connectedness.
Formal definition
A topological space is said to be disconnected if it is the union of two disjoint non-empty open sets. Otherwise,
is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.
For a topological space the following conditions are equivalent:
is connected, that is, it cannot be divided into two disjoint non-empty open sets.
- The only subsets of
which are both open and closed (clopen sets) are
and the empty set.
- The only subsets of
with empty boundary are
and the empty set.
cannot be written as the union of two non-empty separated sets (sets for which each is disjoint from the other's closure).
- All continuous functions from
to
are constant, where
is the two-point space endowed with the discrete topology.
Historically this modern formulation of the notion of connectedness (in terms of no partition of into two separated sets) first appeared (independently) with N.J. Lennes, Frigyes Riesz, and Felix Hausdorff at the beginning of the 20th century. See (Wilder 1978) for details.
Connected components
Given some point in a topological space
the union of any collection of connected subsets such that each contains
will once again be a connected subset. The connected component of a point
in
is the union of all connected subsets of
that contain
it is the unique largest (with respect to
) connected subset of
that contains
The maximal connected subsets (ordered by inclusion
) of a non-empty topological space are called the connected components of the space. The components of any topological space
form a partition of
: they are disjoint, non-empty and their union is the whole space. Every component is a closed subset of the original space. It follows that, in the case where their number is finite, each component is also an open subset. However, if their number is infinite, this might not be the case; for instance, the connected components of the set of the rational numbers are the one-point sets (singletons), which are not open. Proof: Any two distinct rational numbers
are in different components. Take an irrational number
and then set
and
Then
is a separation of
and
. Thus each component is a one-point set.
Let be the connected component of
in a topological space
and
be the intersection of all clopen sets containing
(called quasi-component of
). Then
where the equality holds if
is compact Hausdorff or locally connected.[better source needed]
Disconnected spaces
A space in which all components are one-point sets is called totally disconnected. Related to this property, a space is called totally separated if, for any two distinct elements
and
of
, there exist disjoint open sets
containing
and
containing
such that
is the union of
and
. Clearly, any totally separated space is totally disconnected, but the converse does not hold. For example, take two copies of the rational numbers
, and identify them at every point except zero. The resulting space, with the quotient topology, is totally disconnected. However, by considering the two copies of zero, one sees that the space is not totally separated. In fact, it is not even Hausdorff, and the condition of being totally separated is strictly stronger than the condition of being Hausdorff.
Examples
- The closed interval
in the standard subspace topology is connected; although it can, for example, be written as the union of
and
the second set is not open in the chosen topology of
- The union of
and
is disconnected; both of these intervals are open in the standard topological space
is disconnected.
- A convex subset of
is connected; it is actually simply connected.
- A Euclidean plane excluding the origin,
is connected, but is not simply connected. The three-dimensional Euclidean space without the origin is connected, and even simply connected. In contrast, the one-dimensional Euclidean space without the origin is not connected.
- A Euclidean plane with a straight line removed is not connected since it consists of two half-planes.
, the space of real numbers with the usual topology, is connected.
- The Sorgenfrey line is disconnected.
- If even a single point is removed from
, the remainder is disconnected. However, if even a countable infinity of points are removed from
, where
the remainder is connected. If
, then
remains simply connected after removal of countably many points.
- Any topological vector space, e.g. any Hilbert space or Banach space, over a connected field (such as
or
), is simply connected.
- Every discrete topological space with at least two elements is disconnected, in fact such a space is totally disconnected. The simplest example is the discrete two-point space.
- On the other hand, a finite set might be connected. For example, the spectrum of a discrete valuation ring consists of two points and is connected. It is an example of a Sierpiński space.
- The Cantor set is totally disconnected; since the set contains uncountably many points, it has uncountably many components.
- If a space
is homotopy equivalent to a connected space, then
is itself connected.
- The topologist's sine curve is an example of a set that is connected but is neither path connected nor locally connected.
- The general linear group
(that is, the group of
-by-
real, invertible matrices) consists of two connected components: the one with matrices of positive determinant and the other of negative determinant. In particular, it is not connected. In contrast,
is connected. More generally, the set of invertible bounded operators on a complex Hilbert space is connected.
- The spectra of commutative local ring and integral domains are connected. More generally, the following are equivalent
- The spectrum of a commutative ring
is connected
- Every finitely generated projective module over
has constant rank.
has no idempotent
(i.e.,
is not a product of two rings in a nontrivial way).
- The spectrum of a commutative ring
An example of a space that is not connected is a plane with an infinite line deleted from it. Other examples of disconnected spaces (that is, spaces which are not connected) include the plane with an annulus removed, as well as the union of two disjoint closed disks, where all examples of this paragraph bear the subspace topology induced by two-dimensional Euclidean space.
Path connectedness
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWlMMkk0TDFCaGRHZ3RZMjl1Ym1WamRHVmtYM053WVdObExuTjJaeTh5TWpCd2VDMVFZWFJvTFdOdmJtNWxZM1JsWkY5emNHRmpaUzV6ZG1jdWNHNW4ucG5n.png)
A path-connected space is a stronger notion of connectedness, requiring the structure of a path. A path from a point to a point
in a topological space
is a continuous function
from the unit interval
to
with
and
. A path-component of
is an equivalence class of
under the equivalence relation which makes
equivalent to
if and only if there is a path from
to
. The space
is said to be path-connected (or pathwise connected or
-connected) if there is exactly one path-component. For non-empty spaces, this is equivalent to the statement that there is a path joining any two points in
. Again, many authors exclude the empty space.
Every path-connected space is connected. The converse is not always true: examples of connected spaces that are not path-connected include the extended long line and the topologist's sine curve.
Subsets of the real line are connected if and only if they are path-connected; these subsets are the intervals and rays of
. Also, open subsets of
or
are connected if and only if they are path-connected. Additionally, connectedness and path-connectedness are the same for finite topological spaces.
Arc connectedness
A space is said to be arc-connected or arcwise connected if any two topologically distinguishable points can be joined by an arc, which is an embedding
. An arc-component of
is a maximal arc-connected subset of
; or equivalently an equivalence class of the equivalence relation of whether two points can be joined by an arc or by a path whose points are topologically indistinguishable.
Every Hausdorff space that is path-connected is also arc-connected; more generally this is true for a -Hausdorff space, which is a space where each image of a path is closed. An example of a space which is path-connected but not arc-connected is given by the line with two origins; its two copies of
can be connected by a path but not by an arc.
Intuition for path-connected spaces does not readily transfer to arc-connected spaces. Let be the line with two origins. The following are facts whose analogues hold for path-connected spaces, but do not hold for arc-connected spaces:
- Continuous image of arc-connected space may not be arc-connected: for example, a quotient map from an arc-connected space to its quotient with countably many (at least 2) topologically distinguishable points cannot be arc-connected due to too small cardinality.
- Arc-components may not be disjoint. For example,
has two overlapping arc-components.
- Arc-connected product space may not be a product of arc-connected spaces. For example,
is arc-connected, but
is not.
- Arc-components of a product space may not be products of arc-components of the marginal spaces. For example,
has a single arc-component, but
has two arc-components.
- If arc-connected subsets have a non-empty intersection, then their union may not be arc-connected. For example, the arc-components of
intersect, but their union is not arc-connected.
Local connectedness
A topological space is said to be locally connected at a point if every neighbourhood of
contains a connected open neighbourhood. It is locally connected if it has a base of connected sets. It can be shown that a space
is locally connected if and only if every component of every open set of
is open.
Similarly, a topological space is said to be locally path-connected if it has a base of path-connected sets. An open subset of a locally path-connected space is connected if and only if it is path-connected. This generalizes the earlier statement about and
, each of which is locally path-connected. More generally, any topological manifold is locally path-connected.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelZpTDFSdmNHOXNiMmRwYzNSelh5VXlPSGRoY25OaGR5VXlPVjl6YVc1bFgyTjFjblpsTG5CdVp5OHpNVFJ3ZUMxVWIzQnZiRzluYVhOMGMxOGxNamgzWVhKellYY2xNamxmYzJsdVpWOWpkWEoyWlM1d2JtYz0ucG5n.png)
Locally connected does not imply connected, nor does locally path-connected imply path connected. A simple example of a locally connected (and locally path-connected) space that is not connected (or path-connected) is the union of two separated intervals in , such as
.
A classical example of a connected space that is not locally connected is the so-called topologist's sine curve, defined as , with the Euclidean topology induced by inclusion in
.
Set operations
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWlMMkpqTDFWdWFXOXVYMlYwWDJsdWRHVnljMlZqZEdsdmJsOWtKVEkzWlc1elpXMWliR1Z6TG5OMlp5OHlNakJ3ZUMxVmJtbHZibDlsZEY5cGJuUmxjbk5sWTNScGIyNWZaQ1V5TjJWdWMyVnRZbXhsY3k1emRtY3VjRzVuLnBuZw==.png)
The intersection of connected sets is not necessarily connected.
The union of connected sets is not necessarily connected, as can be seen by considering .
Each ellipse is a connected set, but the union is not connected, since it can be partitioned to two disjoint open sets and
.
This means that, if the union is disconnected, then the collection
can be partitioned to two sub-collections, such that the unions of the sub-collections are disjoint and open in
(see picture). This implies that in several cases, a union of connected sets is necessarily connected. In particular:
- If the common intersection of all sets is not empty (
), then obviously they cannot be partitioned to collections with disjoint unions. Hence the union of connected sets with non-empty intersection is connected.
- If the intersection of each pair of sets is not empty (
) then again they cannot be partitioned to collections with disjoint unions, so their union must be connected.
- If the sets can be ordered as a "linked chain", i.e. indexed by integer indices and
, then again their union must be connected.
- If the sets are pairwise-disjoint and the quotient space
is connected, then X must be connected. Otherwise, if
is a separation of X then
is a separation of the quotient space (since
are disjoint and open in the quotient space).[better source needed]
The set difference of connected sets is not necessarily connected. However, if and their difference
is disconnected (and thus can be written as a union of two open sets
and
), then the union of
with each such component is connected (i.e.
is connected for all
).
By contradiction, suppose is not connected. So it can be written as the union of two disjoint open sets, e.g.
. Because
is connected, it must be entirely contained in one of these components, say
, and thus
is contained in
. Now we know that:
The two sets in the last union are disjoint and open in
, so there is a separation of
, contradicting the fact that
is connected.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlF5TDBOdmJtNWxZM1JsWkc1bGMzTXRiMll0YzJWMExXUnBabVpsY21WdVkyVXVjRzVuTHpJeU1IQjRMVU52Ym01bFkzUmxaRzVsYzNNdGIyWXRjMlYwTFdScFptWmxjbVZ1WTJVdWNHNW4ucG5n.png)
Theorems
- Main theorem of connectedness: Let
and
be topological spaces and let
be a continuous function. If
is (path-)connected then the image
is (path-)connected. This result can be considered a generalization of the intermediate value theorem.
- Every path-connected space is connected.
- In a locally path-connected space, every open connected set is path-connected.
- Every locally path-connected space is locally connected.
- A locally path-connected space is path-connected if and only if it is connected.
- The closure of a connected subset is connected. Furthermore, any subset between a connected subset and its closure is connected.
- The connected components are always closed (but in general not open)
- The connected components of a locally connected space are also open.
- The connected components of a space are disjoint unions of the path-connected components (which in general are neither open nor closed).
- Every quotient of a connected (resp. locally connected, path-connected, locally path-connected) space is connected (resp. locally connected, path-connected, locally path-connected).
- Every product of a family of connected (resp. path-connected) spaces is connected (resp. path-connected).
- Every open subset of a locally connected (resp. locally path-connected) space is locally connected (resp. locally path-connected).
- Every manifold is locally path-connected.
- Arc-wise connected space is path connected, but path-wise connected space may not be arc-wise connected
- Continuous image of arc-wise connected set is arc-wise connected.
Graphs
Graphs have path connected subsets, namely those subsets for which every pair of points has a path of edges joining them. But it is not always possible to find a topology on the set of points which induces the same connected sets. The 5-cycle graph (and any -cycle with
odd) is one such example.
As a consequence, a notion of connectedness can be formulated independently of the topology on a space. To wit, there is a category of connective spaces consisting of sets with collections of connected subsets satisfying connectivity axioms; their morphisms are those functions which map connected sets to connected sets (Muscat & Buhagiar 2006). Topological spaces and graphs are special cases of connective spaces; indeed, the finite connective spaces are precisely the finite graphs.
However, every graph can be canonically made into a topological space, by treating vertices as points and edges as copies of the unit interval (see topological graph theory#Graphs as topological spaces). Then one can show that the graph is connected (in the graph theoretical sense) if and only if it is connected as a topological space.
Stronger forms of connectedness
There are stronger forms of connectedness for topological spaces, for instance:
- If there exist no two disjoint non-empty open sets in a topological space
,
must be connected, and thus hyperconnected spaces are also connected.
- Since a simply connected space is, by definition, also required to be path connected, any simply connected space is also connected. If the "path connectedness" requirement is dropped from the definition of simple connectivity, a simply connected space does not need to be connected.
- Yet stronger versions of connectivity include the notion of a contractible space. Every contractible space is path connected and thus also connected.
In general, any path connected space must be connected but there exist connected spaces that are not path connected. The deleted comb space furnishes such an example, as does the above-mentioned topologist's sine curve.
See also
- Connected component (graph theory) – Maximal subgraph whose vertices can reach each other
- Connectedness locus
- Domain (mathematical analysis) – Connected open subset of a topological space
- Extremally disconnected space – Topological space in which the closure of every open set is open
- Locally connected space – Property of topological spaces
- n-connected
- Uniformly connected space – Type of uniform space
- Pixel connectivity
References
- "General topology - Components of the set of rational numbers".
- Stephen Willard (1970). General Topology. Dover. p. 191. ISBN 0-486-43479-6.
- George F. Simmons (1968). Introduction to Topology and Modern Analysis. McGraw Hill Book Company. p. 144. ISBN 0-89874-551-9.
- Charles Weibel, The K-book: An introduction to algebraic K-theory
- Brandsma, Henno (February 13, 2013). "How to prove this result involving the quotient maps and connectedness?". Stack Exchange.
- Marek (February 13, 2013). "How to prove this result about connectedness?". Stack Exchange.
- Wilder, R.L. (1978). "Evolution of the Topological Concept of "Connected"". American Mathematical Monthly. 85 (9): 720–726. doi:10.2307/2321676. JSTOR 2321676.
Further reading
- Munkres, James R. (2000). Topology, Second Edition. Prentice Hall. ISBN 0-13-181629-2.
- Weisstein, Eric W. "Connected Set". MathWorld.
- V. I. Malykhin (2001) [1994], "Connected space", Encyclopedia of Mathematics, EMS Press
- Muscat, J; Buhagiar, D (2006). "Connective Spaces" (PDF). Mem. Fac. Sci. Eng. Shimane Univ., Series B: Math. Sc. 39: 1–13. Archived from the original (PDF) on 2016-03-04. Retrieved 2010-05-17..
In topology and related branches of mathematics a connected space is a topological space that cannot be represented as the union of two or more disjoint non empty open subsets Connectedness is one of the principal topological properties that are used to distinguish topological spaces Connected and disconnected subspaces of R From top to bottom red space A pink space B yellow space C and orange space D are all connected spaces whereas green space E made of subsets E1 E2 E3 and E4 is disconnected Furthermore A and B are also simply connected genus 0 while C and D are not C has genus 1 and D has genus 4 A subset of a topological space X displaystyle X is a connected set if it is a connected space when viewed as a subspace of X displaystyle X Some related but stronger conditions are path connected simply connected and n displaystyle n connected Another related notion is locally connected which neither implies nor follows from connectedness Formal definitionA topological space X displaystyle X is said to be disconnected if it is the union of two disjoint non empty open sets Otherwise X displaystyle X is said to be connected A subset of a topological space is said to be connected if it is connected under its subspace topology Some authors exclude the empty set with its unique topology as a connected space but this article does not follow that practice For a topological space X displaystyle X the following conditions are equivalent X displaystyle X is connected that is it cannot be divided into two disjoint non empty open sets The only subsets of X displaystyle X which are both open and closed clopen sets are X displaystyle X and the empty set The only subsets of X displaystyle X with empty boundary are X displaystyle X and the empty set X displaystyle X cannot be written as the union of two non empty separated sets sets for which each is disjoint from the other s closure All continuous functions from X displaystyle X to 0 1 displaystyle 0 1 are constant where 0 1 displaystyle 0 1 is the two point space endowed with the discrete topology Historically this modern formulation of the notion of connectedness in terms of no partition of X displaystyle X into two separated sets first appeared independently with N J Lennes Frigyes Riesz and Felix Hausdorff at the beginning of the 20th century See Wilder 1978 for details Connected components Given some point x displaystyle x in a topological space X displaystyle X the union of any collection of connected subsets such that each contains x displaystyle x will once again be a connected subset The connected component of a point x displaystyle x in X displaystyle X is the union of all connected subsets of X displaystyle X that contain x displaystyle x it is the unique largest with respect to displaystyle subseteq connected subset of X displaystyle X that contains x displaystyle x The maximal connected subsets ordered by inclusion displaystyle subseteq of a non empty topological space are called the connected components of the space The components of any topological space X displaystyle X form a partition of X displaystyle X they are disjoint non empty and their union is the whole space Every component is a closed subset of the original space It follows that in the case where their number is finite each component is also an open subset However if their number is infinite this might not be the case for instance the connected components of the set of the rational numbers are the one point sets singletons which are not open Proof Any two distinct rational numbers q1 lt q2 displaystyle q 1 lt q 2 are in different components Take an irrational number q1 lt r lt q2 displaystyle q 1 lt r lt q 2 and then set A q Q q lt r displaystyle A q in mathbb Q q lt r and B q Q q gt r displaystyle B q in mathbb Q q gt r Then A B displaystyle A B is a separation of Q displaystyle mathbb Q and q1 A q2 B displaystyle q 1 in A q 2 in B Thus each component is a one point set Let Gx displaystyle Gamma x be the connected component of x displaystyle x in a topological space X displaystyle X and Gx displaystyle Gamma x be the intersection of all clopen sets containing x displaystyle x called quasi component of x displaystyle x Then Gx Gx displaystyle Gamma x subset Gamma x where the equality holds if X displaystyle X is compact Hausdorff or locally connected better source needed Disconnected spaces A space in which all components are one point sets is called totally disconnected Related to this property a space X displaystyle X is called totally separated if for any two distinct elements x displaystyle x and y displaystyle y of X displaystyle X there exist disjoint open sets U displaystyle U containing x displaystyle x and V displaystyle V containing y displaystyle y such that X displaystyle X is the union of U displaystyle U and V displaystyle V Clearly any totally separated space is totally disconnected but the converse does not hold For example take two copies of the rational numbers Q displaystyle mathbb Q and identify them at every point except zero The resulting space with the quotient topology is totally disconnected However by considering the two copies of zero one sees that the space is not totally separated In fact it is not even Hausdorff and the condition of being totally separated is strictly stronger than the condition of being Hausdorff ExamplesThe closed interval 0 2 displaystyle 0 2 in the standard subspace topology is connected although it can for example be written as the union of 0 1 displaystyle 0 1 and 1 2 displaystyle 1 2 the second set is not open in the chosen topology of 0 2 displaystyle 0 2 The union of 0 1 displaystyle 0 1 and 1 2 displaystyle 1 2 is disconnected both of these intervals are open in the standard topological space 0 1 1 2 displaystyle 0 1 cup 1 2 0 1 3 displaystyle 0 1 cup 3 is disconnected A convex subset of Rn displaystyle mathbb R n is connected it is actually simply connected A Euclidean plane excluding the origin 0 0 displaystyle 0 0 is connected but is not simply connected The three dimensional Euclidean space without the origin is connected and even simply connected In contrast the one dimensional Euclidean space without the origin is not connected A Euclidean plane with a straight line removed is not connected since it consists of two half planes R displaystyle mathbb R the space of real numbers with the usual topology is connected The Sorgenfrey line is disconnected If even a single point is removed from R displaystyle mathbb R the remainder is disconnected However if even a countable infinity of points are removed from Rn displaystyle mathbb R n where n 2 displaystyle n geq 2 the remainder is connected If n 3 displaystyle n geq 3 then Rn displaystyle mathbb R n remains simply connected after removal of countably many points Any topological vector space e g any Hilbert space or Banach space over a connected field such as R displaystyle mathbb R or C displaystyle mathbb C is simply connected Every discrete topological space with at least two elements is disconnected in fact such a space is totally disconnected The simplest example is the discrete two point space On the other hand a finite set might be connected For example the spectrum of a discrete valuation ring consists of two points and is connected It is an example of a Sierpinski space The Cantor set is totally disconnected since the set contains uncountably many points it has uncountably many components If a space X displaystyle X is homotopy equivalent to a connected space then X displaystyle X is itself connected The topologist s sine curve is an example of a set that is connected but is neither path connected nor locally connected The general linear group GL n R displaystyle operatorname GL n mathbb R that is the group of n displaystyle n by n displaystyle n real invertible matrices consists of two connected components the one with matrices of positive determinant and the other of negative determinant In particular it is not connected In contrast GL n C displaystyle operatorname GL n mathbb C is connected More generally the set of invertible bounded operators on a complex Hilbert space is connected The spectra of commutative local ring and integral domains are connected More generally the following are equivalentThe spectrum of a commutative ring R displaystyle R is connected Every finitely generated projective module over R displaystyle R has constant rank R displaystyle R has no idempotent 0 1 displaystyle neq 0 1 i e R displaystyle R is not a product of two rings in a nontrivial way An example of a space that is not connected is a plane with an infinite line deleted from it Other examples of disconnected spaces that is spaces which are not connected include the plane with an annulus removed as well as the union of two disjoint closed disks where all examples of this paragraph bear the subspace topology induced by two dimensional Euclidean space Path connectednessThis subspace of R is path connected because a path can be drawn between any two points in the space A path connected space is a stronger notion of connectedness requiring the structure of a path A path from a point x displaystyle x to a point y displaystyle y in a topological space X displaystyle X is a continuous function f displaystyle f from the unit interval 0 1 displaystyle 0 1 to X displaystyle X with f 0 x displaystyle f 0 x and f 1 y displaystyle f 1 y A path component of X displaystyle X is an equivalence class of X displaystyle X under the equivalence relation which makes x displaystyle x equivalent to y displaystyle y if and only if there is a path from x displaystyle x to y displaystyle y The space X displaystyle X is said to be path connected or pathwise connected or 0 displaystyle mathbf 0 connected if there is exactly one path component For non empty spaces this is equivalent to the statement that there is a path joining any two points in X displaystyle X Again many authors exclude the empty space Every path connected space is connected The converse is not always true examples of connected spaces that are not path connected include the extended long line L displaystyle L and the topologist s sine curve Subsets of the real line R displaystyle mathbb R are connected if and only if they are path connected these subsets are the intervals and rays of R displaystyle mathbb R Also open subsets of Rn displaystyle mathbb R n or Cn displaystyle mathbb C n are connected if and only if they are path connected Additionally connectedness and path connectedness are the same for finite topological spaces Arc connectednessA space X displaystyle X is said to be arc connected or arcwise connected if any two topologically distinguishable points can be joined by an arc which is an embedding f 0 1 X displaystyle f 0 1 to X An arc component of X displaystyle X is a maximal arc connected subset of X displaystyle X or equivalently an equivalence class of the equivalence relation of whether two points can be joined by an arc or by a path whose points are topologically indistinguishable Every Hausdorff space that is path connected is also arc connected more generally this is true for a D displaystyle Delta Hausdorff space which is a space where each image of a path is closed An example of a space which is path connected but not arc connected is given by the line with two origins its two copies of 0 displaystyle 0 can be connected by a path but not by an arc Intuition for path connected spaces does not readily transfer to arc connected spaces Let X displaystyle X be the line with two origins The following are facts whose analogues hold for path connected spaces but do not hold for arc connected spaces Continuous image of arc connected space may not be arc connected for example a quotient map from an arc connected space to its quotient with countably many at least 2 topologically distinguishable points cannot be arc connected due to too small cardinality Arc components may not be disjoint For example X displaystyle X has two overlapping arc components Arc connected product space may not be a product of arc connected spaces For example X R displaystyle X times mathbb R is arc connected but X displaystyle X is not Arc components of a product space may not be products of arc components of the marginal spaces For example X R displaystyle X times mathbb R has a single arc component but X displaystyle X has two arc components If arc connected subsets have a non empty intersection then their union may not be arc connected For example the arc components of X displaystyle X intersect but their union is not arc connected Local connectednessA topological space is said to be locally connected at a point x displaystyle x if every neighbourhood of x displaystyle x contains a connected open neighbourhood It is locally connected if it has a base of connected sets It can be shown that a space X displaystyle X is locally connected if and only if every component of every open set of X displaystyle X is open Similarly a topological space is said to be locally path connected if it has a base of path connected sets An open subset of a locally path connected space is connected if and only if it is path connected This generalizes the earlier statement about Rn displaystyle mathbb R n and Cn displaystyle mathbb C n each of which is locally path connected More generally any topological manifold is locally path connected The topologist s sine curve is connected but it is not locally connected Locally connected does not imply connected nor does locally path connected imply path connected A simple example of a locally connected and locally path connected space that is not connected or path connected is the union of two separated intervals in R displaystyle mathbb R such as 0 1 2 3 displaystyle 0 1 cup 2 3 A classical example of a connected space that is not locally connected is the so called topologist s sine curve defined as T 0 0 x sin 1x x 0 1 displaystyle T 0 0 cup left left x sin left tfrac 1 x right right x in 0 1 right with the Euclidean topology induced by inclusion in R2 displaystyle mathbb R 2 Set operationsExamples of unions and intersections of connected sets The intersection of connected sets is not necessarily connected The union of connected sets is not necessarily connected as can be seen by considering X 0 1 1 2 displaystyle X 0 1 cup 1 2 Each ellipse is a connected set but the union is not connected since it can be partitioned to two disjoint open sets U displaystyle U and V displaystyle V This means that if the union X displaystyle X is disconnected then the collection Xi displaystyle X i can be partitioned to two sub collections such that the unions of the sub collections are disjoint and open in X displaystyle X see picture This implies that in several cases a union of connected sets is necessarily connected In particular If the common intersection of all sets is not empty Xi textstyle bigcap X i neq emptyset then obviously they cannot be partitioned to collections with disjoint unions Hence the union of connected sets with non empty intersection is connected If the intersection of each pair of sets is not empty i j Xi Xj displaystyle forall i j X i cap X j neq emptyset then again they cannot be partitioned to collections with disjoint unions so their union must be connected If the sets can be ordered as a linked chain i e indexed by integer indices and i Xi Xi 1 displaystyle forall i X i cap X i 1 neq emptyset then again their union must be connected If the sets are pairwise disjoint and the quotient space X Xi displaystyle X X i is connected then X must be connected Otherwise if U V displaystyle U cup V is a separation of X then q U q V displaystyle q U cup q V is a separation of the quotient space since q U q V displaystyle q U q V are disjoint and open in the quotient space better source needed The set difference of connected sets is not necessarily connected However if X Y displaystyle X supseteq Y and their difference X Y displaystyle X setminus Y is disconnected and thus can be written as a union of two open sets X1 displaystyle X 1 and X2 displaystyle X 2 then the union of Y displaystyle Y with each such component is connected i e Y Xi displaystyle Y cup X i is connected for all i displaystyle i Proof better source needed By contradiction suppose Y X1 displaystyle Y cup X 1 is not connected So it can be written as the union of two disjoint open sets e g Y X1 Z1 Z2 displaystyle Y cup X 1 Z 1 cup Z 2 Because Y displaystyle Y is connected it must be entirely contained in one of these components say Z1 displaystyle Z 1 and thus Z2 displaystyle Z 2 is contained in X1 displaystyle X 1 Now we know that X Y X1 X2 Z1 Z2 X2 Z1 X2 Z2 X1 displaystyle X left Y cup X 1 right cup X 2 left Z 1 cup Z 2 right cup X 2 left Z 1 cup X 2 right cup left Z 2 cap X 1 right The two sets in the last union are disjoint and open in X displaystyle X so there is a separation of X displaystyle X contradicting the fact that X displaystyle X is connected Two connected sets whose difference is not connectedTheoremsMain theorem of connectedness Let X displaystyle X and Y displaystyle Y be topological spaces and let f X Y displaystyle f X rightarrow Y be a continuous function If X displaystyle X is path connected then the image f X displaystyle f X is path connected This result can be considered a generalization of the intermediate value theorem Every path connected space is connected In a locally path connected space every open connected set is path connected Every locally path connected space is locally connected A locally path connected space is path connected if and only if it is connected The closure of a connected subset is connected Furthermore any subset between a connected subset and its closure is connected The connected components are always closed but in general not open The connected components of a locally connected space are also open The connected components of a space are disjoint unions of the path connected components which in general are neither open nor closed Every quotient of a connected resp locally connected path connected locally path connected space is connected resp locally connected path connected locally path connected Every product of a family of connected resp path connected spaces is connected resp path connected Every open subset of a locally connected resp locally path connected space is locally connected resp locally path connected Every manifold is locally path connected Arc wise connected space is path connected but path wise connected space may not be arc wise connected Continuous image of arc wise connected set is arc wise connected GraphsGraphs have path connected subsets namely those subsets for which every pair of points has a path of edges joining them But it is not always possible to find a topology on the set of points which induces the same connected sets The 5 cycle graph and any n displaystyle n cycle with n gt 3 displaystyle n gt 3 odd is one such example As a consequence a notion of connectedness can be formulated independently of the topology on a space To wit there is a category of connective spaces consisting of sets with collections of connected subsets satisfying connectivity axioms their morphisms are those functions which map connected sets to connected sets Muscat amp Buhagiar 2006 Topological spaces and graphs are special cases of connective spaces indeed the finite connective spaces are precisely the finite graphs However every graph can be canonically made into a topological space by treating vertices as points and edges as copies of the unit interval see topological graph theory Graphs as topological spaces Then one can show that the graph is connected in the graph theoretical sense if and only if it is connected as a topological space Stronger forms of connectednessThere are stronger forms of connectedness for topological spaces for instance If there exist no two disjoint non empty open sets in a topological space X displaystyle X X displaystyle X must be connected and thus hyperconnected spaces are also connected Since a simply connected space is by definition also required to be path connected any simply connected space is also connected If the path connectedness requirement is dropped from the definition of simple connectivity a simply connected space does not need to be connected Yet stronger versions of connectivity include the notion of a contractible space Every contractible space is path connected and thus also connected In general any path connected space must be connected but there exist connected spaces that are not path connected The deleted comb space furnishes such an example as does the above mentioned topologist s sine curve See alsoMathematics portalConnected component graph theory Maximal subgraph whose vertices can reach each otherPages displaying short descriptions of redirect targets Connectedness locus Domain mathematical analysis Connected open subset of a topological space Extremally disconnected space Topological space in which the closure of every open set is open Locally connected space Property of topological spaces n connected Uniformly connected space Type of uniform space Pixel connectivityReferences General topology Components of the set of rational numbers Stephen Willard 1970 General Topology Dover p 191 ISBN 0 486 43479 6 George F Simmons 1968 Introduction to Topology and Modern Analysis McGraw Hill Book Company p 144 ISBN 0 89874 551 9 Charles Weibel The K book An introduction to algebraic K theory Brandsma Henno February 13 2013 How to prove this result involving the quotient maps and connectedness Stack Exchange Marek February 13 2013 How to prove this result about connectedness Stack Exchange Wilder R L 1978 Evolution of the Topological Concept of Connected American Mathematical Monthly 85 9 720 726 doi 10 2307 2321676 JSTOR 2321676 Further readingMunkres James R 2000 Topology Second Edition Prentice Hall ISBN 0 13 181629 2 Weisstein Eric W Connected Set MathWorld V I Malykhin 2001 1994 Connected space Encyclopedia of Mathematics EMS Press Muscat J Buhagiar D 2006 Connective Spaces PDF Mem Fac Sci Eng Shimane Univ Series B Math Sc 39 1 13 Archived from the original PDF on 2016 03 04 Retrieved 2010 05 17