![Ball (mathematics)](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi84LzhjL0JsdWUtc3BoZXJlXyUyOGNyb3AlMjkucG5nLzE2MDBweC1CbHVlLXNwaGVyZV8lMjhjcm9wJTI5LnBuZw==.png )
In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODRMemhqTDBKc2RXVXRjM0JvWlhKbFh5VXlPR055YjNBbE1qa3VjRzVuTHpJeU1IQjRMVUpzZFdVdGMzQm9aWEpsWHlVeU9HTnliM0FsTWprdWNHNW4ucG5n.png)
This article needs additional citations for verification.(March 2024) |
These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment.
In other contexts, such as in Euclidean geometry and informal use, sphere is sometimes used to mean ball. In the field of topology the closed -dimensional ball is often denoted as or while the open -dimensional ball is or .
In Euclidean space
In Euclidean n-space, an (open) n-ball of radius r and center x is the set of all points of distance less than r from x. A closed n-ball of radius r is the set of all points of distance less than or equal to r away from x.
In Euclidean n-space, every ball is bounded by a hypersphere. The ball is a bounded interval when n = 1, is a disk bounded by a circle when n = 2, and is bounded by a sphere when n = 3.
Volume
The n-dimensional volume of a Euclidean ball of radius r in n-dimensional Euclidean space is: where Γ is Leonhard Euler's gamma function (which can be thought of as an extension of the factorial function to fractional arguments). Using explicit formulas for particular values of the gamma function at the integers and half integers gives formulas for the volume of a Euclidean ball that do not require an evaluation of the gamma function. These are:
In the formula for odd-dimensional volumes, the double factorial (2k + 1)!! is defined for odd integers 2k + 1 as (2k + 1)!! = 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2k − 1) ⋅ (2k + 1).
In general metric spaces
Let (M, d) be a metric space, namely a set M with a metric (distance function) d, and let be a positive real number. The open (metric) ball of radius r centered at a point p in M, usually denoted by Br(p) or B(p; r), is defined the same way as a Euclidean ball, as the set of points in M of distance less than r away from p,
The closed (metric) ball, sometimes denoted Br[p] or B[p; r], is likewise defined as the set of points of distance less than or equal to r away from p,
In particular, a ball (open or closed) always includes p itself, since the definition requires r > 0. A unit ball (open or closed) is a ball of radius 1.
A ball in a general metric space need not be round. For example, a ball in real coordinate space under the Chebyshev distance is a hypercube, and a ball under the taxicab distance is a cross-polytope. A closed ball also need not be compact. For example, a closed ball in any infinite-dimensional normed vector space is never compact. However, a ball in a vector space will always be convex as a consequence of the triangle inequality.
A subset of a metric space is bounded if it is contained in some ball. A set is totally bounded if, given any positive radius, it is covered by finitely many balls of that radius.
The open balls of a metric space can serve as a base, giving this space a topology, the open sets of which are all possible unions of open balls. This topology on a metric space is called the topology induced by the metric d.
Let denote the closure of the open ball
in this topology. While it is always the case that
it is not always the case that
For example, in a metric space
with the discrete metric, one has
but
for any
In normed vector spaces
Any normed vector space V with norm is also a metric space with the metric
In such spaces, an arbitrary ball
of points
around a point
with a distance of less than
may be viewed as a scaled (by
) and translated (by
) copy of a unit ball
Such "centered" balls with
are denoted with
The Euclidean balls discussed earlier are an example of balls in a normed vector space.
p-norm
In a Cartesian space Rn with the p-norm Lp, that is one chooses some and defines
Then an open ball around the origin with radius
is given by the set
For n = 2, in a 2-dimensional plane
, "balls" according to the L1-norm (often called the taxicab or Manhattan metric) are bounded by squares with their diagonals parallel to the coordinate axes; those according to the L∞-norm, also called the Chebyshev metric, have squares with their sides parallel to the coordinate axes as their boundaries. The L2-norm, known as the Euclidean metric, generates the well known disks within circles, and for other values of p, the corresponding balls are areas bounded by Lamé curves (hypoellipses or hyperellipses).
For n = 3, the L1- balls are within octahedra with axes-aligned body diagonals, the L∞-balls are within cubes with axes-aligned edges, and the boundaries of balls for Lp with p > 2 are superellipsoids. p = 2 generates the inner of usual spheres.
Often can also consider the case of in which case we define
General convex norm
More generally, given any centrally symmetric, bounded, open, and convex subset X of Rn, one can define a norm on Rn where the balls are all translated and uniformly scaled copies of X. Note this theorem does not hold if "open" subset is replaced by "closed" subset, because the origin point qualifies but does not define a norm on Rn.
In topological spaces
One may talk about balls in any topological space X, not necessarily induced by a metric. An (open or closed) n-dimensional topological ball of X is any subset of X which is homeomorphic to an (open or closed) Euclidean n-ball. Topological n-balls are important in combinatorial topology, as the building blocks of cell complexes.
Any open topological n-ball is homeomorphic to the Cartesian space Rn and to the open unit n-cube (hypercube) (0, 1)n ⊆ Rn. Any closed topological n-ball is homeomorphic to the closed n-cube [0, 1]n.
An n-ball is homeomorphic to an m-ball if and only if n = m. The homeomorphisms between an open n-ball B and Rn can be classified in two classes, that can be identified with the two possible topological orientations of B.
A topological n-ball need not be smooth; if it is smooth, it need not be diffeomorphic to a Euclidean n-ball.
Regions
A number of special regions can be defined for a ball:
- cap, bounded by one plane
- sector, bounded by a conical boundary with apex at the center of the sphere
- segment, bounded by a pair of parallel planes
- shell, bounded by two concentric spheres of differing radii
- wedge, bounded by two planes passing through a sphere center and the surface of the sphere
See also
- Ball – ordinary meaning
- Disk (mathematics)
- Formal ball, an extension to negative radii
- Neighbourhood (mathematics)
- Sphere, a similar geometric shape
- 3-sphere
- n-sphere, or hypersphere
- Alexander horned sphere
- Manifold
- Volume of an n-ball
- Octahedron – a 3-ball in the l1 metric.
References
- Smith, D. J.; Vamanamurthy, M. K. (1989). "How small is a unit ball?". Mathematics Magazine. 62 (2): 101–107. doi:10.1080/0025570x.1989.11977419. JSTOR 2690391.
- Dowker, J. S. (1996). "Robin Conditions on the Euclidean ball". Classical and Quantum Gravity. 13 (4): 585–610. arXiv:hep-th/9506042. Bibcode:1996CQGra..13..585D. doi:10.1088/0264-9381/13/4/003. S2CID 119438515.
- Gruber, Peter M. (1982). "Isometries of the space of convex bodies contained in a Euclidean ball". Israel Journal of Mathematics. 42 (4): 277–283. doi:10.1007/BF02761407. S2CID 119483499.
In mathematics a ball is the solid figure bounded by a sphere it is also called a solid sphere It may be a closed ball including the boundary points that constitute the sphere or an open ball excluding them In Euclidean space a ball is the volume bounded by a sphereThis article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Ball mathematics news newspapers books scholar JSTOR March 2024 Learn how and when to remove this message These concepts are defined not only in three dimensional Euclidean space but also for lower and higher dimensions and for metric spaces in general A ball in n dimensions is called a hyperball or n ball and is bounded by a hypersphere or n 1 sphere Thus for example a ball in the Euclidean plane is the same thing as a disk the area bounded by a circle In Euclidean 3 space a ball is taken to be the volume bounded by a 2 dimensional sphere In a one dimensional space a ball is a line segment In other contexts such as in Euclidean geometry and informal use sphere is sometimes used to mean ball In the field of topology the closed n displaystyle n dimensional ball is often denoted as Bn displaystyle B n or Dn displaystyle D n while the open n displaystyle n dimensional ball is int Bn displaystyle operatorname int B n or int Dn displaystyle operatorname int D n In Euclidean spaceIn Euclidean n space an open n ball of radius r and center x is the set of all points of distance less than r from x A closed n ball of radius r is the set of all points of distance less than or equal to r away from x In Euclidean n space every ball is bounded by a hypersphere The ball is a bounded interval when n 1 is a disk bounded by a circle when n 2 and is bounded by a sphere when n 3 Volume The n dimensional volume of a Euclidean ball of radius r in n dimensional Euclidean space is Vn r pn2G n2 1 rn displaystyle V n r frac pi frac n 2 Gamma left frac n 2 1 right r n where G is Leonhard Euler s gamma function which can be thought of as an extension of the factorial function to fractional arguments Using explicit formulas for particular values of the gamma function at the integers and half integers gives formulas for the volume of a Euclidean ball that do not require an evaluation of the gamma function These are V2k r pkk r2k V2k 1 r 2k 1pk 2k 1 r2k 1 2 k 4p k 2k 1 r2k 1 displaystyle begin aligned V 2k r amp frac pi k k r 2k 2pt V 2k 1 r amp frac 2 k 1 pi k left 2k 1 right r 2k 1 frac 2 left k right left 4 pi right k left 2k 1 right r 2k 1 end aligned In the formula for odd dimensional volumes the double factorial 2k 1 is defined for odd integers 2k 1 as 2k 1 1 3 5 2k 1 2k 1 In general metric spacesLet M d be a metric space namely a set M with a metric distance function d and let r displaystyle r be a positive real number The open metric ball of radius r centered at a point p in M usually denoted by Br p or B p r is defined the same way as a Euclidean ball as the set of points in M of distance less than r away from p Br p x M d x p lt r displaystyle B r p x in M mid d x p lt r The closed metric ball sometimes denoted Br p or B p r is likewise defined as the set of points of distance less than or equal to r away from p Br p x M d x p r displaystyle B r p x in M mid d x p leq r In particular a ball open or closed always includes p itself since the definition requires r gt 0 A unit ball open or closed is a ball of radius 1 A ball in a general metric space need not be round For example a ball in real coordinate space under the Chebyshev distance is a hypercube and a ball under the taxicab distance is a cross polytope A closed ball also need not be compact For example a closed ball in any infinite dimensional normed vector space is never compact However a ball in a vector space will always be convex as a consequence of the triangle inequality A subset of a metric space is bounded if it is contained in some ball A set is totally bounded if given any positive radius it is covered by finitely many balls of that radius The open balls of a metric space can serve as a base giving this space a topology the open sets of which are all possible unions of open balls This topology on a metric space is called the topology induced by the metric d Let Br p displaystyle overline B r p denote the closure of the open ball Br p displaystyle B r p in this topology While it is always the case that Br p Br p Br p displaystyle B r p subseteq overline B r p subseteq B r p it is not always the case that Br p Br p displaystyle overline B r p B r p For example in a metric space X displaystyle X with the discrete metric one has B1 p p displaystyle overline B 1 p p but B1 p X displaystyle B 1 p X for any p X displaystyle p in X In normed vector spacesAny normed vector space V with norm displaystyle cdot is also a metric space with the metric d x y x y displaystyle d x y x y In such spaces an arbitrary ball Br y displaystyle B r y of points x displaystyle x around a point y displaystyle y with a distance of less than r displaystyle r may be viewed as a scaled by r displaystyle r and translated by y displaystyle y copy of a unit ball B1 0 displaystyle B 1 0 Such centered balls with y 0 displaystyle y 0 are denoted with B r displaystyle B r The Euclidean balls discussed earlier are an example of balls in a normed vector space p norm In a Cartesian space Rn with the p norm Lp that is one chooses some p 1 displaystyle p geq 1 and defines x p x1 p x2 p xn p 1 p displaystyle left x right p left x 1 p x 2 p dots x n p right 1 p Then an open ball around the origin with radius r displaystyle r is given by the set B r x Rn x p x1 p x2 p xn p 1 p lt r displaystyle B r left x in mathbb R n left x right p left x 1 p x 2 p dots x n p right 1 p lt r right For n 2 in a 2 dimensional plane R2 displaystyle mathbb R 2 balls according to the L1 norm often called the taxicab or Manhattan metric are bounded by squares with their diagonals parallel to the coordinate axes those according to the L norm also called the Chebyshev metric have squares with their sides parallel to the coordinate axes as their boundaries The L2 norm known as the Euclidean metric generates the well known disks within circles and for other values of p the corresponding balls are areas bounded by Lame curves hypoellipses or hyperellipses For n 3 the L1 balls are within octahedra with axes aligned body diagonals the L balls are within cubes with axes aligned edges and the boundaries of balls for Lp with p gt 2 are superellipsoids p 2 generates the inner of usual spheres Often can also consider the case of p displaystyle p infty in which case we define x max x1 xn displaystyle lVert x rVert infty max left x 1 right dots left x n right General convex norm More generally given any centrally symmetric bounded open and convex subset X of Rn one can define a norm on Rn where the balls are all translated and uniformly scaled copies of X Note this theorem does not hold if open subset is replaced by closed subset because the origin point qualifies but does not define a norm on Rn In topological spacesOne may talk about balls in any topological space X not necessarily induced by a metric An open or closed n dimensional topological ball of X is any subset of X which is homeomorphic to an open or closed Euclidean n ball Topological n balls are important in combinatorial topology as the building blocks of cell complexes Any open topological n ball is homeomorphic to the Cartesian space Rn and to the open unit n cube hypercube 0 1 n Rn Any closed topological n ball is homeomorphic to the closed n cube 0 1 n An n ball is homeomorphic to an m ball if and only if n m The homeomorphisms between an open n ball B and Rn can be classified in two classes that can be identified with the two possible topological orientations of B A topological n ball need not be smooth if it is smooth it need not be diffeomorphic to a Euclidean n ball RegionsA number of special regions can be defined for a ball cap bounded by one plane sector bounded by a conical boundary with apex at the center of the sphere segment bounded by a pair of parallel planes shell bounded by two concentric spheres of differing radii wedge bounded by two planes passing through a sphere center and the surface of the sphereSee alsoBall ordinary meaning Disk mathematics Formal ball an extension to negative radii Neighbourhood mathematics Sphere a similar geometric shape 3 sphere n sphere or hypersphere Alexander horned sphere Manifold Volume of an n ball Octahedron a 3 ball in the l1 metric ReferencesSugakkai Nihon 1993 Encyclopedic Dictionary of Mathematics MIT Press ISBN 9780262590204 Equation 5 19 4 NIST Digital Library of Mathematical Functions 1 Release 1 0 6 of 2013 05 06 Smith D J Vamanamurthy M K 1989 How small is a unit ball Mathematics Magazine 62 2 101 107 doi 10 1080 0025570x 1989 11977419 JSTOR 2690391 Dowker J S 1996 Robin Conditions on the Euclidean ball Classical and Quantum Gravity 13 4 585 610 arXiv hep th 9506042 Bibcode 1996CQGra 13 585D doi 10 1088 0264 9381 13 4 003 S2CID 119438515 Gruber Peter M 1982 Isometries of the space of convex bodies contained in a Euclidean ball Israel Journal of Mathematics 42 4 277 283 doi 10 1007 BF02761407 S2CID 119483499