![Alfred Tarski](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi83LzcxL0FsZnJlZFRhcnNraTE5NjguanBlZy8zMzBweC1BbGZyZWRUYXJza2kxOTY4LmpwZWc=.jpeg )
Alfred Tarski (/ˈtɑːrski/; Polish: [ˈtarskʲi]; born Alfred Teitelbaum; January 14, 1901 – October 26, 1983) was a Polish-Americanlogician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy.
Alfred Tarski | |
---|---|
![]() Tarski in 1968 | |
Born | Alfred Teitelbaum January 14, 1901 Warsaw, Congress Poland |
Died | October 26, 1983 | (aged 82)
Nationality | Polish, American |
Education | University of Warsaw (Ph.D., 1924) |
Known for |
|
Scientific career | |
Fields | Mathematics, logic, formal language |
Institutions |
|
Thesis | O wyrazie pierwotnym logistyki (On the Primitive Term of Logistic) (1924) |
Doctoral advisor | Stanisław Leśniewski |
Doctoral students |
|
Other notable students | Evert Willem Beth |
Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.
His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with his contemporary, Kurt Gödel, he changed the face of logic in the twentieth century, especially through his work on the concept of truth and the theory of models."
Life
Early life and education
Alfred Tarski was born Alfred Teitelbaum (Polish spelling: "Tajtelbaum"), to parents who were Polish Jews in comfortable circumstances. He first manifested his mathematical abilities while in secondary school, at Warsaw's . Nevertheless, he entered the University of Warsaw in 1918 intending to study biology.
After Poland regained independence in 1918, Warsaw University came under the leadership of Jan Łukasiewicz, Stanisław Leśniewski and Wacław Sierpiński and quickly became a world-leading research institution in logic, foundational mathematics, and the philosophy of mathematics. Leśniewski recognized Tarski's potential as a mathematician and encouraged him to abandon biology. Henceforth Tarski attended courses taught by Łukasiewicz, Sierpiński, Stefan Mazurkiewicz and Tadeusz Kotarbiński, and in 1924 became the only person ever to complete a doctorate under Leśniewski's supervision. His thesis was entitled O wyrazie pierwotnym logistyki (On the Primitive Term of Logistic; published 1923). Tarski and Leśniewski soon grew cool to each other, mainly due to the latter's increasing anti-semitism. However, in later life, Tarski reserved his warmest praise for Kotarbiński, which was reciprocated.
In 1923, Alfred Teitelbaum and his brother Wacław changed their surname to "Tarski". The Tarski brothers also converted to Roman Catholicism, Poland's dominant religion. Alfred did so even though he was an avowed atheist.
Career
After becoming the youngest person ever to complete a doctorate at Warsaw University, Tarski taught logic at the Polish Pedagogical Institute, mathematics and logic at the university, and served as Łukasiewicz's assistant. Because these positions were poorly paid, Tarski also taught mathematics at the Third Boys’ Gimnazjum of the Trade Union of Polish Secondary-School Teachers (later the Stefan Żeromski Gimnazjum), a Warsaw secondary school, beginning in 1925. Before World War II, it was not uncommon for European intellectuals of research caliber to teach high school. Hence until his departure for the United States in 1939, Tarski not only wrote several textbooks and many papers, a number of them ground-breaking, but also did so while supporting himself primarily by teaching high-school mathematics. In 1929 Tarski married fellow teacher Maria Witkowska, a Pole of Catholic background. She had worked as a courier for the army in the Polish–Soviet War. They had two children; a son who became a physicist, and a daughter Ina, who married the mathematician Andrzej Ehrenfeucht.
Tarski applied for a chair of philosophy at Lwów University, but on Bertrand Russell's recommendation it was awarded to Leon Chwistek. In 1930, Tarski visited the University of Vienna, lectured to Karl Menger's colloquium, and met Kurt Gödel. Thanks to a fellowship, he was able to return to Vienna during the first half of 1935 to work with Menger's research group. From Vienna he traveled to Paris to present his ideas on truth at the first meeting of the Unity of Science movement, an outgrowth of the Vienna Circle. Tarski's academic career in Poland was strongly and repeatedly impacted by his heritage. For example, in 1937, Tarski applied for a chair at Poznań University but the chair was abolished to avoid assigning it to Tarski (who was undisputedly the strongest applicant) because he was a Jew. Tarski's ties to the Unity of Science movement likely saved his life, because they resulted in his being invited to address the Unity of Science Congress held in September 1939 at Harvard University. Thus he left Poland in August 1939, on the last ship to sail from Poland for the United States before the German and Soviet invasion of Poland and the outbreak of World War II. Tarski left reluctantly, because Leśniewski had died a few months before, creating a vacancy which Tarski hoped to fill. Oblivious to the Nazi threat, he left his wife and children in Warsaw. He did not see them again until 1946. During the war, nearly all his Jewish extended family were murdered at the hands of the German occupying authorities.
Once in the United States, Tarski held a number of temporary teaching and research positions: Harvard University (1939), City College of New York (1940), and thanks to a Guggenheim Fellowship, the Institute for Advanced Study in Princeton (1942), where he again met Gödel. In 1942, Tarski joined the Mathematics Department at the University of California, Berkeley, where he spent the rest of his career. Tarski became an American citizen in 1945. Although emeritus from 1968, he taught until 1973 and supervised Ph.D. candidates until his death. At Berkeley, Tarski acquired a reputation as an astounding and demanding teacher, a fact noted by many observers:
His seminars at Berkeley quickly became famous in the world of mathematical logic. His students, many of whom became distinguished mathematicians, noted the awesome energy with which he would coax and cajole their best work out of them, always demanding the highest standards of clarity and precision.
Tarski was extroverted, quick-witted, strong-willed, energetic, and sharp-tongued. He preferred his research to be collaborative — sometimes working all night with a colleague — and was very fastidious about priority.
A charismatic leader and teacher, known for his brilliantly precise yet suspenseful expository style, Tarski had intimidatingly high standards for students, but at the same time he could be very encouraging, and particularly so to women — in contrast to the general trend. Some students were frightened away, but a circle of disciples remained, many of whom became world-renowned leaders in the field.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHlMekl3THpJd01EY3dNakEyWDNWM1gySjFkMTlvWVd4c1gyZHNiM2R1ZVY5aWFXSnNhVzkwWld0cExtcHdaeTh6TXpCd2VDMHlNREEzTURJd05sOTFkMTlpZFhkZmFHRnNiRjluYkc5M2JubGZZbWxpYkdsdmRHVnJhUzVxY0djPS5qcGc=.jpg)
Tarski supervised twenty-four Ph.D. dissertations including (in chronological order) those of Andrzej Mostowski, Bjarni Jónsson, Julia Robinson, Robert Vaught, Solomon Feferman, Richard Montague, , Haim Gaifman, , and Roger Maddux, as well as Chen Chung Chang and Jerome Keisler, authors of Model Theory (1973), a classic text in the field. He also strongly influenced the dissertations of Adolf Lindenbaum, Dana Scott, and . Five of Tarski's students were women, a remarkable fact given that men represented an overwhelming majority of graduate students at the time. However, he had extra-marital affairs with at least two of these students. After he showed another of his female student's[who?] work to a male colleague[who?], the colleague published it himself, leading her to leave the graduate study and later move to a different university and a different advisor.
Tarski lectured at University College, London (1950, 1966), the Institut Henri Poincaré in Paris (1955), the Miller Institute for Basic Research in Science in Berkeley (1958–60), the University of California at Los Angeles (1967), and the Pontifical Catholic University of Chile (1974–75). Among many distinctions garnered over the course of his career, Tarski was elected to the United States National Academy of Sciences, the British Academy and the Royal Netherlands Academy of Arts and Sciences in 1958, received honorary degrees from the Pontifical Catholic University of Chile in 1975, from Marseilles' Paul Cézanne University in 1977 and from the University of Calgary, as well as the Berkeley Citation in 1981. Tarski presided over the Association for Symbolic Logic, 1944–46, and the International Union for the History and Philosophy of Science, 1956–57. He was also an honorary editor of Algebra Universalis.
Work in mathematics
Tarski's mathematical interests were exceptionally broad. His collected papers run to about 2,500 pages, most of them on mathematics, not logic. For a concise survey of Tarski's mathematical and logical accomplishments by his former student Solomon Feferman, see "Interludes I–VI" in Feferman and Feferman.
Tarski's first paper, published when he was 19 years old, was on set theory, a subject to which he returned throughout his life. In 1924, he and Stefan Banach proved that, if one accepts the Axiom of Choice, a ball can be cut into a finite number of pieces, and then reassembled into a ball of larger size, or alternatively it can be reassembled into two balls whose sizes each equal that of the original one. This result is now called the Banach–Tarski paradox.
In A decision method for elementary algebra and geometry, Tarski showed, by the method of quantifier elimination, that the first-order theory of the real numbers under addition and multiplication is decidable. (While this result appeared only in 1948, it dates back to 1930 and was mentioned in Tarski (1931).) This is a very curious result, because Alonzo Church proved in 1936 that Peano arithmetic (the theory of natural numbers) is not decidable. Peano arithmetic is also incomplete by Gödel's incompleteness theorem. In his 1953 Undecidable theories, Tarski et al. showed that many mathematical systems, including lattice theory, abstract projective geometry, and closure algebras, are all undecidable. The theory of Abelian groups is decidable, but that of non-Abelian groups is not.
While teaching at the Stefan Żeromski Gimnazjum in the 1920s and 30s, Tarski often taught geometry. Using some ideas of Mario Pieri, in 1926 Tarski devised an original axiomatization for plane Euclidean geometry, one considerably more concise than Hilbert's.Tarski's axioms form a first-order theory devoid of set theory, whose individuals are points, and having only two primitive relations. In 1930, he proved this theory decidable because it can be mapped into another theory he had already proved decidable, namely his first-order theory of the real numbers.
In 1929 he showed that much of Euclidean solid geometry could be recast as a second-order theory whose individuals are spheres (a primitive notion), a single primitive binary relation "is contained in", and two axioms that, among other things, imply that containment partially orders the spheres. Relaxing the requirement that all individuals be spheres yields a formalization of mereology far easier to exposit than Lesniewski's variant. Near the end of his life, Tarski wrote a very long letter, published as Tarski and Givant (1999), summarizing his work on geometry.
Cardinal Algebras studied algebras whose models include the arithmetic of cardinal numbers. Ordinal Algebras sets out an algebra for the additive theory of order types. Cardinal, but not ordinal, addition commutes.
In 1941, Tarski published an important paper on binary relations, which began the work on relation algebra and its metamathematics that occupied Tarski and his students for much of the balance of his life. While that exploration (and the closely related work of Roger Lyndon) uncovered some important limitations of relation algebra, Tarski also showed (Tarski and Givant 1987) that relation algebra can express most axiomatic set theory and Peano arithmetic. For an introduction to relation algebra, see Maddux (2006). In the late 1940s, Tarski and his students devised cylindric algebras, which are to first-order logic what the two-element Boolean algebra is to classical sentential logic. This work culminated in the two monographs by Tarski, Henkin, and Monk (1971, 1985).
Work in logic
Tarski's student, Robert Lawson Vaught, has ranked Tarski as one of the four greatest logicians of all time — along with Aristotle, Gottlob Frege, and Kurt Gödel. However, Tarski often expressed great admiration for Charles Sanders Peirce, particularly for his pioneering work in the logic of relations.
Tarski produced axioms for logical consequence and worked on deductive systems, the algebra of logic, and the theory of definability. His semantic methods, which culminated in the model theory he and a number of his Berkeley students developed in the 1950s and 60s, radically transformed Hilbert's proof-theoretic metamathematics. Around 1930, Tarski developed an abstract theory of logical deductions that models some properties of logical calculi. Mathematically, what he described is just a finitary closure operator on a set (the set of sentences). In abstract algebraic logic, finitary closure operators are still studied under the name consequence operator, which was coined by Tarski. The set S represents a set of sentences, a subset T of S a theory, and cl(T) is the set of all sentences that follow from the theory. This abstract approach was applied to fuzzy logic (see Gerla 2000).
In [Tarski's] view, metamathematics became similar to any mathematical discipline. Not only can its concepts and results be mathematized, but they actually can be integrated into mathematics. ... Tarski destroyed the borderline between metamathematics and mathematics. He objected to restricting the role of metamathematics to the foundations of mathematics.
Tarski's 1936 article "On the concept of logical consequence" argued that the conclusion of an argument will follow logically from its premises if and only if every model of the premises is a model of the conclusion. In 1937, he published a paper presenting clearly his views on the nature and purpose of the deductive method, and the role of logic in scientific studies. His high school and undergraduate teaching on logic and axiomatics culminated in a classic short text, published first in Polish, then in German translation, and finally in a 1941 English translation as Introduction to Logic and to the Methodology of Deductive Sciences.
Tarski's 1969 "Truth and proof" considered both Gödel's incompleteness theorems and Tarski's undefinability theorem, and mulled over their consequences for the axiomatic method in mathematics.
Truth in formalized languages
In 1933, Tarski published a very long paper in Polish, titled "Pojęcie prawdy w językach nauk dedukcyjnych", "Setting out a mathematical definition of truth for formal languages." The 1935 German translation was titled "Der Wahrheitsbegriff in den formalisierten Sprachen", "The concept of truth in formalized languages", sometimes shortened to "Wahrheitsbegriff". An English translation appeared in the 1956 first edition of the volume . This collection of papers from 1923 to 1938 is an event in 20th-century analytic philosophy, a contribution to symbolic logic, semantics, and the philosophy of language. For a brief discussion of its content, see Convention T (and also T-schema).
A philosophical debate examines the extent to which Tarski's theory of truth for formalized languages can be seen as a correspondence theory of truth. The debate centers on how to read Tarski's condition of material adequacy for a true definition. That condition requires that the truth theory have the following as theorems for all sentences p of the language for which truth is being defined:
- "p" is true if and only if p.
(where p is the proposition expressed by "p")
The debate amounts to whether to read sentences of this form, such as
"Snow is white" is true if and only if snow is white
as expressing merely a deflationary theory of truth or as embodying truth as a more substantial property (see Kirkham 1992).
Logical consequence
In 1936, Tarski published Polish and German versions of a lecture, “On the Concept of Following Logically", he had given the preceding year at the International Congress of Scientific Philosophy in Paris. A new English translation of this paper, Tarski (2002), highlights the many differences between the German and Polish versions of the paper and corrects a number of mistranslations in Tarski (1983).
This publication set out the modern model-theoretic definition of (semantic) logical consequence, or at least the basis for it. Whether Tarski's notion was entirely the modern one turns on whether he intended to admit models with varying domains (and in particular, models with domains of different cardinalities).[citation needed] This question is a matter of some debate in the philosophical literature. John Etchemendy stimulated much of the discussion about Tarski's treatment of varying domains.
Tarski ends by pointing out that his definition of logical consequence depends upon a division of terms into the logical and the extra-logical and he expresses some skepticism that any such objective division will be forthcoming. "What are Logical Notions?" can thus be viewed as continuing "On the Concept of Logical Consequence".[citation needed]
Logical notions
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHhMekZrTDBGc1puSmxaRjlVWVhKemEya3VhbkJsWnk4eU1qQndlQzFCYkdaeVpXUmZWR0Z5YzJ0cExtcHdaV2M9LmpwZWc=.jpeg)
Tarski's "What are Logical Notions?" (Tarski 1986) is the published version of a talk that he gave originally in 1966 in London and later in 1973 in Buffalo; it was edited without his direct involvement by John Corcoran. It became the most cited paper in the journal History and Philosophy of Logic.
In the talk, Tarski proposed demarcation of logical operations (which he calls "notions") from non-logical. The suggested criteria were derived from the Erlangen program of the 19th-century German mathematician Felix Klein. Mautner (in 1946), and possibly[clarification needed] an article by the Portuguese mathematician José Sebastião e Silva, anticipated Tarski in applying the Erlangen Program to logic.[citation needed]
The Erlangen program classified the various types of geometry (Euclidean geometry, affine geometry, topology, etc.) by the type of one-one transformation of space onto itself that left the objects of that geometrical theory invariant. (A one-to-one transformation is a functional map of the space onto itself so that every point of the space is associated with or mapped to one other point of the space. So, "rotate 30 degrees" and "magnify by a factor of 2" are intuitive descriptions of simple uniform one-one transformations.) Continuous transformations give rise to the objects of topology, similarity transformations to those of Euclidean geometry, and so on.[citation needed]
As the range of permissible transformations becomes broader, the range of objects one is able to distinguish as preserved by the application of the transformations becomes narrower. Similarity transformations are fairly narrow (they preserve the relative distance between points) and thus allow us to distinguish relatively many things (e.g., equilateral triangles from non-equilateral triangles). Continuous transformations (which can intuitively be thought of as transformations which allow non-uniform stretching, compression, bending, and twisting, but no ripping or glueing) allow us to distinguish a polygon from an annulus (ring with a hole in the centre), but do not allow us to distinguish two polygons from each other.[citation needed]
Tarski's proposal[which?] was to demarcate the logical notions by considering all possible one-to-one transformations (automorphisms) of a domain onto itself. By domain is meant the universe of discourse of a model for the semantic theory of logic. If one identifies the truth value True with the domain set and the truth-value False with the empty set, then the following operations are counted as logical under the proposal:
- Truth-functions: All truth-functions are admitted by the proposal. This includes, but is not limited to, all n-ary truth-functions for finite n. (It also admits of truth-functions with any infinite number of places.)
- Individuals: No individuals, provided the domain has at least two members.
- Predicates:
- the one-place total and null predicates, the former having all members of the domain in its extension and the latter having no members of the domain in its extension
- two-place total and null predicates, the former having the set of all ordered pairs of domain members as its extension and the latter with the empty set as extension
- the two-place identity predicate, with the set of all order-pairs <a,a> in its extension, where a is a member of the domain
- the two-place diversity predicate, with the set of all order pairs <a,b> where a and b are distinct members of the domain
- n-ary predicates in general: all predicates definable from the identity predicate together with conjunction, disjunction and negation (up to any ordinality, finite or infinite)
- Quantifiers: Tarski explicitly discusses only monadic quantifiers and points out that all such numerical quantifiers are admitted under his proposal. These include the standard universal and existential quantifiers as well as numerical quantifiers such as "Exactly four", "Finitely many", "Uncountably many", and "Between four and 9 million", for example. While Tarski does not enter into the issue, it is also clear that polyadic quantifiers are admitted under the proposal. These are quantifiers like, given two predicates Fx and Gy, "More(x, y)", which says "More things have F than have G."
- Set-Theoretic relations: Relations such as inclusion, intersection and union applied to subsets of the domain are logical in the present sense.
- Set membership: Tarski ended his lecture with a discussion of whether the set membership relation counted as logical in his sense. (Given the reduction of (most of) mathematics to set theory, this was, in effect, the question of whether most or all of mathematics is a part of logic.) He pointed out that set membership is logical if set theory is developed along the lines of type theory, but is extralogical if set theory is set out axiomatically, as in the canonical Zermelo–Fraenkel set theory.
- Logical notions of higher order: While Tarski confined his discussion to operations of first-order logic, there is nothing about his proposal that necessarily restricts it to first-order logic. (Tarski likely restricted his attention to first-order notions as the talk was given to a non-technical audience.) So, higher-order quantifiers and predicates are admitted as well.[citation needed]
In some ways the present proposal is the obverse of that of Lindenbaum and Tarski (1936), who proved that all the logical operations of Bertrand Russell's and Whitehead's Principia Mathematica are invariant under one-to-one transformations of the domain onto itself. The present proposal is also employed in Tarski and (1987).
Solomon Feferman and further discussed Tarski's proposal[which?] in work published after his death. Feferman (1999) raises problems for the proposal and suggests a cure: replacing Tarski's preservation by automorphisms with preservation by arbitrary homomorphisms. In essence, this suggestion circumvents the difficulty Tarski's proposal has in dealing with a sameness of logical operation across distinct domains of a given cardinality and across domains of distinct cardinalities. Feferman's proposal results in a radical restriction of logical terms as compared to Tarski's original proposal. In particular, it ends up counting as logical only those operators of standard first-order logic without identity.[citation needed]
(1996) provides a precise account of what operations are logical in the sense of Tarski's proposal in terms of expressibility in a language that extends first-order logic by allowing arbitrarily long conjunctions and disjunctions, and quantification over arbitrarily many variables. "Arbitrarily" includes a countable infinity.
Selected publications
- Anthologies and collections
- 1986. The Collected Papers of Alfred Tarski, 4 vols. Givant, S. R., and McKenzie, R. N., eds. Birkhäuser.
- Givant Steven (1986). "Bibliography of Alfred Tarski". Journal of Symbolic Logic. 51 (4): 913–41. doi:10.2307/2273905. JSTOR 2273905. S2CID 44369365.
- 1983 (1956). Logic, Semantics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski, Corcoran, J., ed. Hackett. 1st edition edited and translated by J. H. Woodger, Oxford Uni. Press. This collection contains translations from Polish of some of Tarski's most important papers of his early career, including The Concept of Truth in Formalized Languages and On the Concept of Logical Consequence discussed above.
- Original publications of Tarski
- 1930 Une contribution à la théorie de la mesure. Fund Math 15 (1930), 42–50.
- 1930. (with Jan Łukasiewicz). "Untersuchungen uber den Aussagenkalkul" ["Investigations into the Sentential Calculus"], Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie, Vol, 23 (1930) Cl. III, pp. 31–32 in Tarski (1983): 38–59.
- 1931. "Sur les ensembles définissables de nombres réels I", Fundamenta Mathematicae 17: 210–239 in Tarski (1983): 110–142.
- 1936. "Grundlegung der wissenschaftlichen Semantik", Actes du Congrès international de philosophie scientifique, Sorbonne, Paris 1935, vol. III, Language et pseudo-problèmes, Paris, Hermann, 1936, pp. 1–8 in Tarski (1983): 401–408.
- 1936. "Über den Begriff der logischen Folgerung", Actes du Congrès international de philosophie scientifique, Sorbonne, Paris 1935, vol. VII, Logique, Paris: Hermann, pp. 1–11 in Tarski (1983): 409–420.
- 1936 (with Adolf Lindenbaum). "On the Limitations of Deductive Theories" in Tarski (1983): 384–92.
- 1937. Einführung in die Mathematische Logik und in die Methodologie der Mathematik. Springer, Wien (Vienna).
- 1994 (1941).Introduction to Logic and to the Methodology of Deductive Sciences. Dover.
- 1941. "On the calculus of relations", Journal of Symbolic Logic 6: 73–89.
- 1944. "The Semantical Concept of Truth and the Foundations of Semantics," Philosophy and Phenomenological Research 4: 341–75.
- 1948. A decision method for elementary algebra and geometry. Santa Monica CA: RAND Corp.
- 1949. Cardinal Algebras. Oxford Univ. Press.
- 1953 (with Mostowski and Raphael Robinson). Undecidable theories. North Holland.
- 1956. Ordinal algebras. North-Holland.
- 1965. "A simplified formalization of predicate logic with identity", Archiv für Mathematische Logik und Grundlagenforschung 7: 61-79
- 1969. "Truth and Proof", Scientific American 220: 63–77.
- 1971 (with Leon Henkin and ). Cylindric Algebras: Part I. North-Holland.
- 1985 (with Leon Henkin and Donald Monk). Cylindric Algebras: Part II. North-Holland.
- 1986. "What are Logical Notions?", Corcoran, J., ed., History and Philosophy of Logic 7: 143–54.
- 1987 (with Steven Givant). A Formalization of Set Theory Without Variables. Vol.41 of American Mathematical Society colloquium publications. Providence RI: American Mathematical Society. ISBN 978-0821810415. Review
- 1999 (with Steven Givant). "Tarski's system of geometry", Bulletin of Symbolic Logic 5: 175–214.
- 2002. "On the Concept of Following Logically" (Magda Stroińska and David Hitchcock, trans.) History and Philosophy of Logic 23: 155–196.
See also
- History of philosophy in Poland
- Cylindric algebra
- Interpretability
- Weak interpretability
- List of things named after Alfred Tarski
- Timeline of Polish science and technology
References
- Alfred Tarski, "Alfred Tarski", Encyclopædia Britannica.
- School of Mathematics and Statistics, University of St Andrews, "Alfred Tarski", School of Mathematics and Statistics, University of St Andrews.
- "Alfred Tarski". Oxford Reference.
- Gomez-Torrente, Mario (March 27, 2014). "Alfred Tarski - Philosophy - Oxford Bibliographies". Oxford University Press. Retrieved October 24, 2017.
- Alfred Tarski, "Alfred Tarski", Stanford Encyclopedia of Philosophy.
- Feferman A.
- Feferman & Feferman, p.1
- Feferman & Feferman, pp.17-18
- Feferman & Feferman, p.26
- Feferman & Feferman, p.294
- "Most of the Socialist Party members were also in favor of assimilation, and Tarski's political allegiance was socialist at the time. So, along with its being a practical move, becoming more Polish than Jewish was an ideological statement and was approved by many, though not all, of his colleagues. As to why Tarski, a professed atheist, converted, that just came with the territory and was part of the package: if you were going to be Polish then you had to say you were Catholic." Anita Burdman Feferman, Solomon Feferman, Alfred Tarski: Life and Logic (2004), page 39.
- McFarland, Andrew; McFarland, Joanna; Smith, James T. (2014). Alfred Tarski: Early work in Poland — geometry and teaching. Birkhäuser/Springer, New York. p. 173. ISBN 978-1-4939-1473-9. MR 3307383.
- McFarland, McFarland & Smith 2014, p. 319.
- Feferman & Feferman (2004), pp. 239–242.
- Feferman & Feferman, p. 67
- Feferman & Feferman, pp. 102-103
- Feferman & Feferman, Chap. 5, pp. 124-149
- Robert Vaught; John Addison; Benson Mates; Julia Robinson (1985). "Alfred Tarski, Mathematics: Berkeley". University of California (System) Academic Senate. Retrieved 2008-12-26.
- Obituary in Times, reproduced here
- Gregory Moore, "Alfred Tarski" in Dictionary of Scientific Biography
- Feferman
- Chang, C.C., and Keisler, H.J., 1973. Model Theory. North-Holland, Amsterdam. American Elsevier, New York.
- Alfred Tarski at the Mathematics Genealogy Project
- Feferman & Feferman, pp. 385-386
- Feferman & Feferman, pp. 177–178 and 197–201.
- "Alfred Tarski (1902 - 1983)". Royal Netherlands Academy of Arts and Sciences. Retrieved 17 July 2015.
- O'Connor, John J.; Robertson, Edmund F., "Alfred Tarski", MacTutor History of Mathematics Archive, University of St Andrews
- Feferman & Feferman, pp. 43-52, 69-75, 109-123, 189-195, 277-287, 334-342
- "Alfred Tarski". mathshistory.st-andrews.ac.uk. Retrieved 28 April 2023.
- Katie Buchhorn (8 August 2012). "The Banach-Tarski Paradox". arXiv:2108.05714 [math.HO].
- McFarland, McFarland & Smith 2014, Section 9.2: Teaching geometry, pp. 179–184.
- Adam Grabowski. "Tarski's Geometry and the Euclidean Plane in Mizar" (PDF). ceur-ws.org. Retrieved 28 April 2023.
- Tarski, Alfred; Givant, Steven (1999). "Tarski's System of Geometry". The Bulletin of Symbolic Logic. 5 (2): 175–214. doi:10.2307/421089. JSTOR 421089. S2CID 18551419.
- "Tarski's convention-T and inductive definition?". Goodmancoaching. 22 May 2022. Retrieved 28 April 2023.
- Vaught, Robert L. (Dec 1986). "Alfred Tarski's Work in Model Theory". Journal of Symbolic Logic. 51 (4): 869–882. doi:10.2307/2273900. JSTOR 2273900. S2CID 27153078.
- Restall, Greg (2002–2006). "Great Moments in Logic". Archived from the original on 6 December 2008. Retrieved 2009-01-03.
- Sinaceur, Hourya (2001). "Alfred Tarski: Semantic Shift, Heuristic Shift in Metamathematics". Synthese. 126 (1–2): 49–65. doi:10.1023/A:1005268531418. ISSN 0039-7857. S2CID 28783841.
- Gómez-Torrente, Mario (1996). "Tarski on Logical Consequence". Notre Dame Journal of Formal Logic. 37. doi:10.1305/ndjfl/1040067321. S2CID 13217777.
- "Introduction To Logic And To The Methodology Of Deductive Sciences". archive.org. Retrieved 28 April 2023.
- Alfred Tarski, "POJĘCIE PRAWDY W JĘZYKACH NAUK DEDUKCYJNYCH", Towarszystwo Naukowe Warszawskie, Warszawa, 1933. (Text in Polish in the Digital Library WFISUW-IFISPAN-PTF) Archived 2016-03-04 at the Wayback Machine.
- Tarski, Alfred (2002). "On the Concept of Following Logically". History and Philosophy of Logic. 23 (3): 155–196. doi:10.1080/0144534021000036683. S2CID 120956516.
- Etchemendy, John (1999). The Concept of Logical Consequence. Stanford CA: CSLI Publications. ISBN 978-1-57586-194-4.
- "History and Philosophy of Logic".
- Németi, István (12 March 2014). "Alfred Tarski and Steven Givant. A formalization of set theory without variables. American Mathematical Society colloquium publications, vol. 41. American Mathematical Society, Providence1987, xxi + 318 pp". The Journal of Symbolic Logic. 55 (1): 350–352. doi:10.2307/2274990. JSTOR 2274990. Retrieved 28 April 2023.
- McGee, Vann (1997). "Revision". Philosophical Issues. 8: 387–406. doi:10.2307/1523019. JSTOR 1523019. Retrieved 28 April 2023.
- Halmos, Paul (1957). "Review: Logic, semantics, metamathematics. Papers from 1923 to 1938 by Alfred Tarski; translated by J. H. Woodger" (PDF). Bull. Amer. Math. Soc. 63 (2): 155–156. doi:10.1090/S0002-9904-1957-10115-3.
- Quine, W. V. (1938). "Review: Einführung in die mathematische Logik und in die Methodologie der Mathematik by Alfred Tarski. Vienna, Springer, 1937. x+166 pp" (PDF). Bull. Amer. Math. Soc. 44 (5): 317–318. doi:10.1090/s0002-9904-1938-06731-6.
- Curry, Haskell B. (1942). "Review: Introduction to Logic and to the Methodology of Deductive Sciences by Alfred Tarski" (PDF). Bull. Amer. Math. Soc. 48 (7): 507–510. doi:10.1090/s0002-9904-1942-07698-1.
- McNaughton, Robert (1953). "Review: A decision method for elementary algebra and geometry by A. Tarski" (PDF). Bull. Amer. Math. Soc. 59 (1): 91–93. doi:10.1090/s0002-9904-1953-09664-1.
- Birkhoff, Garrett (1950). "Review: Cardinal algebras by A. Tarski" (PDF). Bull. Amer. Math. Soc. 56 (2): 208–209. doi:10.1090/s0002-9904-1950-09394-x.
- Gál, Ilse Novak (1954). "Review: Undecidable theories by Alfred Tarski in collaboration with A. Mostowsku and R. M. Robinson" (PDF). Bull. Amer. Math. Soc. 60 (6): 570–572. doi:10.1090/S0002-9904-1954-09858-0.
Further reading
- Biographical references
- Feferman, Anita Burdman (1999). "Alfred Tarski". American National Biography. Vol. 21. Oxford University Press. pp. 330–332. ISBN 978-0-19-512800-0.
- Feferman, Anita Burdman; Feferman, Solomon (2004). Alfred Tarski: Life and Logic. Cambridge University Press. ISBN 978-0-521-80240-6. OCLC 54691904.
- Frost-Arnold, Greg (2013). Carnap, Tarski, and Quine at Harvard: Conversations on Logic, Mathematics, and Science. Chicago: Open Court. ISBN 9780812698374.
- Givant Steven (1991). "A portrait of Alfred Tarski". Mathematical Intelligencer. 13 (3): 16–32. doi:10.1007/bf03023831. S2CID 122867668.
- Patterson, Douglas. Alfred Tarski: Philosophy of Language and Logic (Palgrave Macmillan; 2012) 262 pages; biography focused on his work from the late-1920s to the mid-1930s, with particular attention to influences from his teachers Stanislaw Lesniewski and Tadeusz Kotarbinski.
- Logic literature
- The December 1986 issue of the Journal of Symbolic Logic surveys Tarski's work on model theory (Robert Vaught), algebra (Jonsson), undecidable theories (McNulty), algebraic logic (Donald Monk), and geometry (Szczerba). The March 1988 issue of the same journal surveys his work on axiomatic set theory (Azriel Levy), real closed fields (Lou Van Den Dries), decidable theory (Doner and Wilfrid Hodges), metamathematics (Blok and Pigozzi), truth and logical consequence (John Etchemendy), and general philosophy (Patrick Suppes).
- Blok, W. J.; Pigozzi, Don, "Alfred Tarski's Work on General Metamathematics", The Journal of Symbolic Logic, Vol. 53, No. 1 (Mar., 1988), pp. 36–50
- Chang, C.C., and Keisler, H.J., 1973. Model Theory. North-Holland, Amsterdam. American Elsevier, New York.
- Corcoran, John, and Sagüillo, José Miguel, 2011. "The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper", History and Philosophy of Logic 32: 359–80. [1]
- Corcoran, John, and Weber, Leonardo, 2015. "Tarski's convention T: condition beta", South American Journal of Logic. 1, 3–32.
- Etchemendy, John, 1999. The Concept of Logical Consequence. Stanford CA: CSLI Publications. ISBN 1-57586-194-1
- Feferman Solomon (1999). "Logic, Logics, and Logicism" (PDF). Notre Dame Journal of Formal Logic. 40: 31–54. doi:10.1305/ndjfl/1039096304.
- (2000) Fuzzy Logic: Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers.
- Grattan-Guinness, Ivor, 2000. The Search for Mathematical Roots 1870-1940. Princeton Uni. Press.
- Kirkham, Richard, 1992. Theories of Truth. MIT Press.
- Maddux, Roger D., 2006. Relation Algebras, vol. 150 in "Studies in Logic and the Foundations of Mathematics", Elsevier Science.
- Mautner F. I. (1946). "An Extension of Klein's Erlanger Program: Logic as Invariant-Theory". American Journal of Mathematics. 68 (3): 345–84. doi:10.2307/2371821. JSTOR 2371821.
- McGee Van (1996). "Logical Operations". Journal of Philosophical Logic. 25 (6): 567–80. doi:10.1007/bf00265253. S2CID 32381037.
- Popper, Karl R., 1972, Rev. Ed. 1979, "Philosophical Comments on Tarski's Theory of Truth", with Addendum, Objective Knowledge, Oxford: 319–340.
- Sinaceur H (2001). "Alfred Tarski: Semantic shift, heuristic shift in metamathematics". Synthese. 126: 49–65. doi:10.1023/a:1005268531418. S2CID 28783841.
- Smith, James T., 2010. "Definitions and Nondefinability in Geometry", American Mathematical Monthly 117:475–89.
- Wolenski, Jan, 1989. Logic and Philosophy in the Lvov–Warsaw School. Reidel/Kluwer.
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2Wlc0dmRHaDFiV0l2TkM4MFlTOURiMjF0YjI1ekxXeHZaMjh1YzNabkx6TXdjSGd0UTI5dGJXOXVjeTFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlpoTDFkcGEybHhkVzkwWlMxc2IyZHZMbk4yWnk4ek5IQjRMVmRwYTJseGRXOTBaUzFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
- Stanford Encyclopedia of Philosophy:
- Tarski's Truth Definitions by Wilfred Hodges.
- Alfred Tarski by Mario Gómez-Torrente.
- Algebraic Propositional Logic by Ramon Jansana. Includes a fairly detailed discussion of Tarski's work on these topics.
- Tarski's Semantic Theory on the Internet Encyclopedia of Philosophy.
Alfred Tarski ˈ t ɑːr s k i Polish ˈtarskʲi born Alfred Teitelbaum January 14 1901 October 26 1983 was a Polish Americanlogician and mathematician A prolific author best known for his work on model theory metamathematics and algebraic logic he also contributed to abstract algebra topology geometry measure theory mathematical logic set theory and analytic philosophy Alfred TarskiTarski in 1968BornAlfred Teitelbaum 1901 01 14 January 14 1901 Warsaw Congress PolandDiedOctober 26 1983 1983 10 26 aged 82 Berkeley California USNationalityPolish AmericanEducationUniversity of Warsaw Ph D 1924 Known forWork on the foundations of modern logic Semantic theory of truth Convention T Tarski s undefinability theorem Development of model theory Logic of relations Banach Tarski paradox Tarski s fixed point theorem Tarski style universes Tarski s axioms Tarski monster group Tarski s circle squaring problem Tarski Kuratowski algorithm Jonsson Tarski duality Lindenbaum Tarski algebraScientific careerFieldsMathematics logic formal languageInstitutionsUniversity of Warsaw 1925 1939 University of California Berkeley 1942 1983 ThesisO wyrazie pierwotnym logistyki On the Primitive Term of Logistic 1924 Doctoral advisorStanislaw LesniewskiDoctoral studentsSolomon Feferman Haim Gaifman Bjarni Jonsson Howard Jerome Keisler Roger Maddux Richard Montague Anne C Morel Andrzej Mostowski Julia Robinson Wanda Szmielew Robert VaughtOther notable studentsEvert Willem Beth Educated in Poland at the University of Warsaw and a member of the Lwow Warsaw school of logic and the Warsaw school of mathematics he immigrated to the United States in 1939 where he became a naturalized citizen in 1945 Tarski taught and carried out research in mathematics at the University of California Berkeley from 1942 until his death in 1983 His biographers Anita Burdman Feferman and Solomon Feferman state that Along with his contemporary Kurt Godel he changed the face of logic in the twentieth century especially through his work on the concept of truth and the theory of models LifeEarly life and education Alfred Tarski was born Alfred Teitelbaum Polish spelling Tajtelbaum to parents who were Polish Jews in comfortable circumstances He first manifested his mathematical abilities while in secondary school at Warsaw s Nevertheless he entered the University of Warsaw in 1918 intending to study biology After Poland regained independence in 1918 Warsaw University came under the leadership of Jan Lukasiewicz Stanislaw Lesniewski and Waclaw Sierpinski and quickly became a world leading research institution in logic foundational mathematics and the philosophy of mathematics Lesniewski recognized Tarski s potential as a mathematician and encouraged him to abandon biology Henceforth Tarski attended courses taught by Lukasiewicz Sierpinski Stefan Mazurkiewicz and Tadeusz Kotarbinski and in 1924 became the only person ever to complete a doctorate under Lesniewski s supervision His thesis was entitled O wyrazie pierwotnym logistyki On the Primitive Term of Logistic published 1923 Tarski and Lesniewski soon grew cool to each other mainly due to the latter s increasing anti semitism However in later life Tarski reserved his warmest praise for Kotarbinski which was reciprocated In 1923 Alfred Teitelbaum and his brother Waclaw changed their surname to Tarski The Tarski brothers also converted to Roman Catholicism Poland s dominant religion Alfred did so even though he was an avowed atheist Career After becoming the youngest person ever to complete a doctorate at Warsaw University Tarski taught logic at the Polish Pedagogical Institute mathematics and logic at the university and served as Lukasiewicz s assistant Because these positions were poorly paid Tarski also taught mathematics at the Third Boys Gimnazjum of the Trade Union of Polish Secondary School Teachers later the Stefan Zeromski Gimnazjum a Warsaw secondary school beginning in 1925 Before World War II it was not uncommon for European intellectuals of research caliber to teach high school Hence until his departure for the United States in 1939 Tarski not only wrote several textbooks and many papers a number of them ground breaking but also did so while supporting himself primarily by teaching high school mathematics In 1929 Tarski married fellow teacher Maria Witkowska a Pole of Catholic background She had worked as a courier for the army in the Polish Soviet War They had two children a son who became a physicist and a daughter Ina who married the mathematician Andrzej Ehrenfeucht Tarski applied for a chair of philosophy at Lwow University but on Bertrand Russell s recommendation it was awarded to Leon Chwistek In 1930 Tarski visited the University of Vienna lectured to Karl Menger s colloquium and met Kurt Godel Thanks to a fellowship he was able to return to Vienna during the first half of 1935 to work with Menger s research group From Vienna he traveled to Paris to present his ideas on truth at the first meeting of the Unity of Science movement an outgrowth of the Vienna Circle Tarski s academic career in Poland was strongly and repeatedly impacted by his heritage For example in 1937 Tarski applied for a chair at Poznan University but the chair was abolished to avoid assigning it to Tarski who was undisputedly the strongest applicant because he was a Jew Tarski s ties to the Unity of Science movement likely saved his life because they resulted in his being invited to address the Unity of Science Congress held in September 1939 at Harvard University Thus he left Poland in August 1939 on the last ship to sail from Poland for the United States before the German and Soviet invasion of Poland and the outbreak of World War II Tarski left reluctantly because Lesniewski had died a few months before creating a vacancy which Tarski hoped to fill Oblivious to the Nazi threat he left his wife and children in Warsaw He did not see them again until 1946 During the war nearly all his Jewish extended family were murdered at the hands of the German occupying authorities Once in the United States Tarski held a number of temporary teaching and research positions Harvard University 1939 City College of New York 1940 and thanks to a Guggenheim Fellowship the Institute for Advanced Study in Princeton 1942 where he again met Godel In 1942 Tarski joined the Mathematics Department at the University of California Berkeley where he spent the rest of his career Tarski became an American citizen in 1945 Although emeritus from 1968 he taught until 1973 and supervised Ph D candidates until his death At Berkeley Tarski acquired a reputation as an astounding and demanding teacher a fact noted by many observers His seminars at Berkeley quickly became famous in the world of mathematical logic His students many of whom became distinguished mathematicians noted the awesome energy with which he would coax and cajole their best work out of them always demanding the highest standards of clarity and precision Tarski was extroverted quick witted strong willed energetic and sharp tongued He preferred his research to be collaborative sometimes working all night with a colleague and was very fastidious about priority A charismatic leader and teacher known for his brilliantly precise yet suspenseful expository style Tarski had intimidatingly high standards for students but at the same time he could be very encouraging and particularly so to women in contrast to the general trend Some students were frightened away but a circle of disciples remained many of whom became world renowned leaders in the field Warsaw University Library at entrance seen from rear are pillared statues of Lwow Warsaw School philosophers right to left Kazimierz Twardowski Jan Lukasiewicz Alfred Tarski Stanislaw Lesniewski Tarski supervised twenty four Ph D dissertations including in chronological order those of Andrzej Mostowski Bjarni Jonsson Julia Robinson Robert Vaught Solomon Feferman Richard Montague Haim Gaifman and Roger Maddux as well as Chen Chung Chang and Jerome Keisler authors of Model Theory 1973 a classic text in the field He also strongly influenced the dissertations of Adolf Lindenbaum Dana Scott and Five of Tarski s students were women a remarkable fact given that men represented an overwhelming majority of graduate students at the time However he had extra marital affairs with at least two of these students After he showed another of his female student s who work to a male colleague who the colleague published it himself leading her to leave the graduate study and later move to a different university and a different advisor Tarski lectured at University College London 1950 1966 the Institut Henri Poincare in Paris 1955 the Miller Institute for Basic Research in Science in Berkeley 1958 60 the University of California at Los Angeles 1967 and the Pontifical Catholic University of Chile 1974 75 Among many distinctions garnered over the course of his career Tarski was elected to the United States National Academy of Sciences the British Academy and the Royal Netherlands Academy of Arts and Sciences in 1958 received honorary degrees from the Pontifical Catholic University of Chile in 1975 from Marseilles Paul Cezanne University in 1977 and from the University of Calgary as well as the Berkeley Citation in 1981 Tarski presided over the Association for Symbolic Logic 1944 46 and the International Union for the History and Philosophy of Science 1956 57 He was also an honorary editor of Algebra Universalis Work in mathematicsTarski s mathematical interests were exceptionally broad His collected papers run to about 2 500 pages most of them on mathematics not logic For a concise survey of Tarski s mathematical and logical accomplishments by his former student Solomon Feferman see Interludes I VI in Feferman and Feferman Tarski s first paper published when he was 19 years old was on set theory a subject to which he returned throughout his life In 1924 he and Stefan Banach proved that if one accepts the Axiom of Choice a ball can be cut into a finite number of pieces and then reassembled into a ball of larger size or alternatively it can be reassembled into two balls whose sizes each equal that of the original one This result is now called the Banach Tarski paradox In A decision method for elementary algebra and geometry Tarski showed by the method of quantifier elimination that the first order theory of the real numbers under addition and multiplication is decidable While this result appeared only in 1948 it dates back to 1930 and was mentioned in Tarski 1931 This is a very curious result because Alonzo Church proved in 1936 that Peano arithmetic the theory of natural numbers is not decidable Peano arithmetic is also incomplete by Godel s incompleteness theorem In his 1953 Undecidable theories Tarski et al showed that many mathematical systems including lattice theory abstract projective geometry and closure algebras are all undecidable The theory of Abelian groups is decidable but that of non Abelian groups is not While teaching at the Stefan Zeromski Gimnazjum in the 1920s and 30s Tarski often taught geometry Using some ideas of Mario Pieri in 1926 Tarski devised an original axiomatization for plane Euclidean geometry one considerably more concise than Hilbert s Tarski s axioms form a first order theory devoid of set theory whose individuals are points and having only two primitive relations In 1930 he proved this theory decidable because it can be mapped into another theory he had already proved decidable namely his first order theory of the real numbers In 1929 he showed that much of Euclidean solid geometry could be recast as a second order theory whose individuals are spheres a primitive notion a single primitive binary relation is contained in and two axioms that among other things imply that containment partially orders the spheres Relaxing the requirement that all individuals be spheres yields a formalization of mereology far easier to exposit than Lesniewski s variant Near the end of his life Tarski wrote a very long letter published as Tarski and Givant 1999 summarizing his work on geometry Cardinal Algebras studied algebras whose models include the arithmetic of cardinal numbers Ordinal Algebras sets out an algebra for the additive theory of order types Cardinal but not ordinal addition commutes In 1941 Tarski published an important paper on binary relations which began the work on relation algebra and its metamathematics that occupied Tarski and his students for much of the balance of his life While that exploration and the closely related work of Roger Lyndon uncovered some important limitations of relation algebra Tarski also showed Tarski and Givant 1987 that relation algebra can express most axiomatic set theory and Peano arithmetic For an introduction to relation algebra see Maddux 2006 In the late 1940s Tarski and his students devised cylindric algebras which are to first order logic what the two element Boolean algebra is to classical sentential logic This work culminated in the two monographs by Tarski Henkin and Monk 1971 1985 Work in logicTarski s student Robert Lawson Vaught has ranked Tarski as one of the four greatest logicians of all time along with Aristotle Gottlob Frege and Kurt Godel However Tarski often expressed great admiration for Charles Sanders Peirce particularly for his pioneering work in the logic of relations Tarski produced axioms for logical consequence and worked on deductive systems the algebra of logic and the theory of definability His semantic methods which culminated in the model theory he and a number of his Berkeley students developed in the 1950s and 60s radically transformed Hilbert s proof theoretic metamathematics Around 1930 Tarski developed an abstract theory of logical deductions that models some properties of logical calculi Mathematically what he described is just a finitary closure operator on a set the set of sentences In abstract algebraic logic finitary closure operators are still studied under the name consequence operator which was coined by Tarski The set S represents a set of sentences a subset T of S a theory and cl T is the set of all sentences that follow from the theory This abstract approach was applied to fuzzy logic see Gerla 2000 In Tarski s view metamathematics became similar to any mathematical discipline Not only can its concepts and results be mathematized but they actually can be integrated into mathematics Tarski destroyed the borderline between metamathematics and mathematics He objected to restricting the role of metamathematics to the foundations of mathematics Tarski s 1936 article On the concept of logical consequence argued that the conclusion of an argument will follow logically from its premises if and only if every model of the premises is a model of the conclusion In 1937 he published a paper presenting clearly his views on the nature and purpose of the deductive method and the role of logic in scientific studies His high school and undergraduate teaching on logic and axiomatics culminated in a classic short text published first in Polish then in German translation and finally in a 1941 English translation as Introduction to Logic and to the Methodology of Deductive Sciences Tarski s 1969 Truth and proof considered both Godel s incompleteness theorems and Tarski s undefinability theorem and mulled over their consequences for the axiomatic method in mathematics Truth in formalized languages In 1933 Tarski published a very long paper in Polish titled Pojecie prawdy w jezykach nauk dedukcyjnych Setting out a mathematical definition of truth for formal languages The 1935 German translation was titled Der Wahrheitsbegriff in den formalisierten Sprachen The concept of truth in formalized languages sometimes shortened to Wahrheitsbegriff An English translation appeared in the 1956 first edition of the volume This collection of papers from 1923 to 1938 is an event in 20th century analytic philosophy a contribution to symbolic logic semantics and the philosophy of language For a brief discussion of its content see Convention T and also T schema A philosophical debate examines the extent to which Tarski s theory of truth for formalized languages can be seen as a correspondence theory of truth The debate centers on how to read Tarski s condition of material adequacy for a true definition That condition requires that the truth theory have the following as theorems for all sentences p of the language for which truth is being defined p is true if and only if p where p is the proposition expressed by p The debate amounts to whether to read sentences of this form such as Snow is white is true if and only if snow is white as expressing merely a deflationary theory of truth or as embodying truth as a more substantial property see Kirkham 1992 Logical consequence In 1936 Tarski published Polish and German versions of a lecture On the Concept of Following Logically he had given the preceding year at the International Congress of Scientific Philosophy in Paris A new English translation of this paper Tarski 2002 highlights the many differences between the German and Polish versions of the paper and corrects a number of mistranslations in Tarski 1983 This publication set out the modern model theoretic definition of semantic logical consequence or at least the basis for it Whether Tarski s notion was entirely the modern one turns on whether he intended to admit models with varying domains and in particular models with domains of different cardinalities citation needed This question is a matter of some debate in the philosophical literature John Etchemendy stimulated much of the discussion about Tarski s treatment of varying domains Tarski ends by pointing out that his definition of logical consequence depends upon a division of terms into the logical and the extra logical and he expresses some skepticism that any such objective division will be forthcoming What are Logical Notions can thus be viewed as continuing On the Concept of Logical Consequence citation needed Logical notions Alfred Tarski at Berkeley Tarski s What are Logical Notions Tarski 1986 is the published version of a talk that he gave originally in 1966 in London and later in 1973 in Buffalo it was edited without his direct involvement by John Corcoran It became the most cited paper in the journal History and Philosophy of Logic In the talk Tarski proposed demarcation of logical operations which he calls notions from non logical The suggested criteria were derived from the Erlangen program of the 19th century German mathematician Felix Klein Mautner in 1946 and possibly clarification needed an article by the Portuguese mathematician Jose Sebastiao e Silva anticipated Tarski in applying the Erlangen Program to logic citation needed The Erlangen program classified the various types of geometry Euclidean geometry affine geometry topology etc by the type of one one transformation of space onto itself that left the objects of that geometrical theory invariant A one to one transformation is a functional map of the space onto itself so that every point of the space is associated with or mapped to one other point of the space So rotate 30 degrees and magnify by a factor of 2 are intuitive descriptions of simple uniform one one transformations Continuous transformations give rise to the objects of topology similarity transformations to those of Euclidean geometry and so on citation needed As the range of permissible transformations becomes broader the range of objects one is able to distinguish as preserved by the application of the transformations becomes narrower Similarity transformations are fairly narrow they preserve the relative distance between points and thus allow us to distinguish relatively many things e g equilateral triangles from non equilateral triangles Continuous transformations which can intuitively be thought of as transformations which allow non uniform stretching compression bending and twisting but no ripping or glueing allow us to distinguish a polygon from an annulus ring with a hole in the centre but do not allow us to distinguish two polygons from each other citation needed Tarski s proposal which was to demarcate the logical notions by considering all possible one to one transformations automorphisms of a domain onto itself By domain is meant the universe of discourse of a model for the semantic theory of logic If one identifies the truth value True with the domain set and the truth value False with the empty set then the following operations are counted as logical under the proposal Truth functions All truth functions are admitted by the proposal This includes but is not limited to all n ary truth functions for finite n It also admits of truth functions with any infinite number of places Individuals No individuals provided the domain has at least two members Predicates the one place total and null predicates the former having all members of the domain in its extension and the latter having no members of the domain in its extension two place total and null predicates the former having the set of all ordered pairs of domain members as its extension and the latter with the empty set as extension the two place identity predicate with the set of all order pairs lt a a gt in its extension where a is a member of the domain the two place diversity predicate with the set of all order pairs lt a b gt where a and b are distinct members of the domain n ary predicates in general all predicates definable from the identity predicate together with conjunction disjunction and negation up to any ordinality finite or infinite Quantifiers Tarski explicitly discusses only monadic quantifiers and points out that all such numerical quantifiers are admitted under his proposal These include the standard universal and existential quantifiers as well as numerical quantifiers such as Exactly four Finitely many Uncountably many and Between four and 9 million for example While Tarski does not enter into the issue it is also clear that polyadic quantifiers are admitted under the proposal These are quantifiers like given two predicates Fx and Gy More x y which says More things have F than have G Set Theoretic relations Relations such as inclusion intersection and union applied to subsets of the domain are logical in the present sense Set membership Tarski ended his lecture with a discussion of whether the set membership relation counted as logical in his sense Given the reduction of most of mathematics to set theory this was in effect the question of whether most or all of mathematics is a part of logic He pointed out that set membership is logical if set theory is developed along the lines of type theory but is extralogical if set theory is set out axiomatically as in the canonical Zermelo Fraenkel set theory Logical notions of higher order While Tarski confined his discussion to operations of first order logic there is nothing about his proposal that necessarily restricts it to first order logic Tarski likely restricted his attention to first order notions as the talk was given to a non technical audience So higher order quantifiers and predicates are admitted as well citation needed In some ways the present proposal is the obverse of that of Lindenbaum and Tarski 1936 who proved that all the logical operations of Bertrand Russell s and Whitehead s Principia Mathematica are invariant under one to one transformations of the domain onto itself The present proposal is also employed in Tarski and 1987 Solomon Feferman and further discussed Tarski s proposal which in work published after his death Feferman 1999 raises problems for the proposal and suggests a cure replacing Tarski s preservation by automorphisms with preservation by arbitrary homomorphisms In essence this suggestion circumvents the difficulty Tarski s proposal has in dealing with a sameness of logical operation across distinct domains of a given cardinality and across domains of distinct cardinalities Feferman s proposal results in a radical restriction of logical terms as compared to Tarski s original proposal In particular it ends up counting as logical only those operators of standard first order logic without identity citation needed 1996 provides a precise account of what operations are logical in the sense of Tarski s proposal in terms of expressibility in a language that extends first order logic by allowing arbitrarily long conjunctions and disjunctions and quantification over arbitrarily many variables Arbitrarily includes a countable infinity Selected publicationsAnthologies and collections1986 The Collected Papers of Alfred Tarski 4 vols Givant S R and McKenzie R N eds Birkhauser Givant Steven 1986 Bibliography of Alfred Tarski Journal of Symbolic Logic 51 4 913 41 doi 10 2307 2273905 JSTOR 2273905 S2CID 44369365 1983 1956 Logic Semantics Metamathematics Papers from 1923 to 1938 by Alfred Tarski Corcoran J ed Hackett 1st edition edited and translated by J H Woodger Oxford Uni Press This collection contains translations from Polish of some of Tarski s most important papers of his early career including The Concept of Truth in Formalized Languages and On the Concept of Logical Consequence discussed above Original publications of Tarski1930 Une contribution a la theorie de la mesure Fund Math 15 1930 42 50 1930 with Jan Lukasiewicz Untersuchungen uber den Aussagenkalkul Investigations into the Sentential Calculus Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie Vol 23 1930 Cl III pp 31 32 in Tarski 1983 38 59 1931 Sur les ensembles definissables de nombres reels I Fundamenta Mathematicae 17 210 239 in Tarski 1983 110 142 1936 Grundlegung der wissenschaftlichen Semantik Actes du Congres international de philosophie scientifique Sorbonne Paris 1935 vol III Language et pseudo problemes Paris Hermann 1936 pp 1 8 in Tarski 1983 401 408 1936 Uber den Begriff der logischen Folgerung Actes du Congres international de philosophie scientifique Sorbonne Paris 1935 vol VII Logique Paris Hermann pp 1 11 in Tarski 1983 409 420 1936 with Adolf Lindenbaum On the Limitations of Deductive Theories in Tarski 1983 384 92 1937 Einfuhrung in die Mathematische Logik und in die Methodologie der Mathematik Springer Wien Vienna 1994 1941 Introduction to Logic and to the Methodology of Deductive Sciences Dover 1941 On the calculus of relations Journal of Symbolic Logic 6 73 89 1944 The Semantical Concept of Truth and the Foundations of Semantics Philosophy and Phenomenological Research 4 341 75 1948 A decision method for elementary algebra and geometry Santa Monica CA RAND Corp 1949 Cardinal Algebras Oxford Univ Press 1953 with Mostowski and Raphael Robinson Undecidable theories North Holland 1956 Ordinal algebras North Holland 1965 A simplified formalization of predicate logic with identity Archiv fur Mathematische Logik und Grundlagenforschung 7 61 79 1969 Truth and Proof Scientific American 220 63 77 1971 with Leon Henkin and Cylindric Algebras Part I North Holland 1985 with Leon Henkin and Donald Monk Cylindric Algebras Part II North Holland 1986 What are Logical Notions Corcoran J ed History and Philosophy of Logic 7 143 54 1987 with Steven Givant A Formalization of Set Theory Without Variables Vol 41 of American Mathematical Society colloquium publications Providence RI American Mathematical Society ISBN 978 0821810415 Review 1999 with Steven Givant Tarski s system of geometry Bulletin of Symbolic Logic 5 175 214 2002 On the Concept of Following Logically Magda Stroinska and David Hitchcock trans History and Philosophy of Logic 23 155 196 See alsoBiography portalPhilosophy portalHistory of philosophy in Poland Cylindric algebra Interpretability Weak interpretability List of things named after Alfred Tarski Timeline of Polish science and technologyReferencesAlfred Tarski Alfred Tarski Encyclopaedia Britannica School of Mathematics and Statistics University of St Andrews Alfred Tarski School of Mathematics and Statistics University of St Andrews Alfred Tarski Oxford Reference Gomez Torrente Mario March 27 2014 Alfred Tarski Philosophy Oxford Bibliographies Oxford University Press Retrieved October 24 2017 Alfred Tarski Alfred Tarski Stanford Encyclopedia of Philosophy Feferman A Feferman amp Feferman p 1 Feferman amp Feferman pp 17 18 Feferman amp Feferman p 26 Feferman amp Feferman p 294 Most of the Socialist Party members were also in favor of assimilation and Tarski s political allegiance was socialist at the time So along with its being a practical move becoming more Polish than Jewish was an ideological statement and was approved by many though not all of his colleagues As to why Tarski a professed atheist converted that just came with the territory and was part of the package if you were going to be Polish then you had to say you were Catholic Anita Burdman Feferman Solomon Feferman Alfred Tarski Life and Logic 2004 page 39 McFarland Andrew McFarland Joanna Smith James T 2014 Alfred Tarski Early work in Poland geometry and teaching Birkhauser Springer New York p 173 ISBN 978 1 4939 1473 9 MR 3307383 McFarland McFarland amp Smith 2014 p 319 Feferman amp Feferman 2004 pp 239 242 Feferman amp Feferman p 67 Feferman amp Feferman pp 102 103 Feferman amp Feferman Chap 5 pp 124 149 Robert Vaught John Addison Benson Mates Julia Robinson 1985 Alfred Tarski Mathematics Berkeley University of California System Academic Senate Retrieved 2008 12 26 Obituary in Times reproduced here Gregory Moore Alfred Tarski in Dictionary of Scientific Biography Feferman Chang C C and Keisler H J 1973 Model Theory North Holland Amsterdam American Elsevier New York Alfred Tarski at the Mathematics Genealogy Project Feferman amp Feferman pp 385 386 Feferman amp Feferman pp 177 178 and 197 201 Alfred Tarski 1902 1983 Royal Netherlands Academy of Arts and Sciences Retrieved 17 July 2015 O Connor John J Robertson Edmund F Alfred Tarski MacTutor History of Mathematics Archive University of St Andrews Feferman amp Feferman pp 43 52 69 75 109 123 189 195 277 287 334 342 Alfred Tarski mathshistory st andrews ac uk Retrieved 28 April 2023 Katie Buchhorn 8 August 2012 The Banach Tarski Paradox arXiv 2108 05714 math HO McFarland McFarland amp Smith 2014 Section 9 2 Teaching geometry pp 179 184 Adam Grabowski Tarski s Geometry and the Euclidean Plane in Mizar PDF ceur ws org Retrieved 28 April 2023 Tarski Alfred Givant Steven 1999 Tarski s System of Geometry The Bulletin of Symbolic Logic 5 2 175 214 doi 10 2307 421089 JSTOR 421089 S2CID 18551419 Tarski s convention T and inductive definition Goodmancoaching 22 May 2022 Retrieved 28 April 2023 Vaught Robert L Dec 1986 Alfred Tarski s Work in Model Theory Journal of Symbolic Logic 51 4 869 882 doi 10 2307 2273900 JSTOR 2273900 S2CID 27153078 Restall Greg 2002 2006 Great Moments in Logic Archived from the original on 6 December 2008 Retrieved 2009 01 03 Sinaceur Hourya 2001 Alfred Tarski Semantic Shift Heuristic Shift in Metamathematics Synthese 126 1 2 49 65 doi 10 1023 A 1005268531418 ISSN 0039 7857 S2CID 28783841 Gomez Torrente Mario 1996 Tarski on Logical Consequence Notre Dame Journal of Formal Logic 37 doi 10 1305 ndjfl 1040067321 S2CID 13217777 Introduction To Logic And To The Methodology Of Deductive Sciences archive org Retrieved 28 April 2023 Alfred Tarski POJeCIE PRAWDY W JeZYKACH NAUK DEDUKCYJNYCH Towarszystwo Naukowe Warszawskie Warszawa 1933 Text in Polish in the Digital Library WFISUW IFISPAN PTF Archived 2016 03 04 at the Wayback Machine Tarski Alfred 2002 On the Concept of Following Logically History and Philosophy of Logic 23 3 155 196 doi 10 1080 0144534021000036683 S2CID 120956516 Etchemendy John 1999 The Concept of Logical Consequence Stanford CA CSLI Publications ISBN 978 1 57586 194 4 History and Philosophy of Logic Nemeti Istvan 12 March 2014 Alfred Tarski and Steven Givant A formalization of set theory without variables American Mathematical Society colloquium publications vol 41 American Mathematical Society Providence1987 xxi 318 pp The Journal of Symbolic Logic 55 1 350 352 doi 10 2307 2274990 JSTOR 2274990 Retrieved 28 April 2023 McGee Vann 1997 Revision Philosophical Issues 8 387 406 doi 10 2307 1523019 JSTOR 1523019 Retrieved 28 April 2023 Halmos Paul 1957 Review Logic semantics metamathematics Papers from 1923 to 1938 by Alfred Tarski translated by J H Woodger PDF Bull Amer Math Soc 63 2 155 156 doi 10 1090 S0002 9904 1957 10115 3 Quine W V 1938 Review Einfuhrung in die mathematische Logik und in die Methodologie der Mathematik by Alfred Tarski Vienna Springer 1937 x 166 pp PDF Bull Amer Math Soc 44 5 317 318 doi 10 1090 s0002 9904 1938 06731 6 Curry Haskell B 1942 Review Introduction to Logic and to the Methodology of Deductive Sciences by Alfred Tarski PDF Bull Amer Math Soc 48 7 507 510 doi 10 1090 s0002 9904 1942 07698 1 McNaughton Robert 1953 Review A decision method for elementary algebra and geometry by A Tarski PDF Bull Amer Math Soc 59 1 91 93 doi 10 1090 s0002 9904 1953 09664 1 Birkhoff Garrett 1950 Review Cardinal algebras by A Tarski PDF Bull Amer Math Soc 56 2 208 209 doi 10 1090 s0002 9904 1950 09394 x Gal Ilse Novak 1954 Review Undecidable theories by Alfred Tarski in collaboration with A Mostowsku and R M Robinson PDF Bull Amer Math Soc 60 6 570 572 doi 10 1090 S0002 9904 1954 09858 0 Further readingBiographical referencesFeferman Anita Burdman 1999 Alfred Tarski American National Biography Vol 21 Oxford University Press pp 330 332 ISBN 978 0 19 512800 0 Feferman Anita Burdman Feferman Solomon 2004 Alfred Tarski Life and Logic Cambridge University Press ISBN 978 0 521 80240 6 OCLC 54691904 Frost Arnold Greg 2013 Carnap Tarski and Quine at Harvard Conversations on Logic Mathematics and Science Chicago Open Court ISBN 9780812698374 Givant Steven 1991 A portrait of Alfred Tarski Mathematical Intelligencer 13 3 16 32 doi 10 1007 bf03023831 S2CID 122867668 Patterson Douglas Alfred Tarski Philosophy of Language and Logic Palgrave Macmillan 2012 262 pages biography focused on his work from the late 1920s to the mid 1930s with particular attention to influences from his teachers Stanislaw Lesniewski and Tadeusz Kotarbinski Logic literatureThe December 1986 issue of the Journal of Symbolic Logic surveys Tarski s work on model theory Robert Vaught algebra Jonsson undecidable theories McNulty algebraic logic Donald Monk and geometry Szczerba The March 1988 issue of the same journal surveys his work on axiomatic set theory Azriel Levy real closed fields Lou Van Den Dries decidable theory Doner and Wilfrid Hodges metamathematics Blok and Pigozzi truth and logical consequence John Etchemendy and general philosophy Patrick Suppes Blok W J Pigozzi Don Alfred Tarski s Work on General Metamathematics The Journal of Symbolic Logic Vol 53 No 1 Mar 1988 pp 36 50 Chang C C and Keisler H J 1973 Model Theory North Holland Amsterdam American Elsevier New York Corcoran John and Saguillo Jose Miguel 2011 The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence Definition Paper History and Philosophy of Logic 32 359 80 1 Corcoran John and Weber Leonardo 2015 Tarski s convention T condition beta South American Journal of Logic 1 3 32 Etchemendy John 1999 The Concept of Logical Consequence Stanford CA CSLI Publications ISBN 1 57586 194 1 Feferman Solomon 1999 Logic Logics and Logicism PDF Notre Dame Journal of Formal Logic 40 31 54 doi 10 1305 ndjfl 1039096304 2000 Fuzzy Logic Mathematical Tools for Approximate Reasoning Kluwer Academic Publishers Grattan Guinness Ivor 2000 The Search for Mathematical Roots 1870 1940 Princeton Uni Press Kirkham Richard 1992 Theories of Truth MIT Press Maddux Roger D 2006 Relation Algebras vol 150 in Studies in Logic and the Foundations of Mathematics Elsevier Science Mautner F I 1946 An Extension of Klein s Erlanger Program Logic as Invariant Theory American Journal of Mathematics 68 3 345 84 doi 10 2307 2371821 JSTOR 2371821 McGee Van 1996 Logical Operations Journal of Philosophical Logic 25 6 567 80 doi 10 1007 bf00265253 S2CID 32381037 Popper Karl R 1972 Rev Ed 1979 Philosophical Comments on Tarski s Theory of Truth with Addendum Objective Knowledge Oxford 319 340 Sinaceur H 2001 Alfred Tarski Semantic shift heuristic shift in metamathematics Synthese 126 49 65 doi 10 1023 a 1005268531418 S2CID 28783841 Smith James T 2010 Definitions and Nondefinability in Geometry American Mathematical Monthly 117 475 89 Wolenski Jan 1989 Logic and Philosophy in the Lvov Warsaw School Reidel Kluwer External linksWikimedia Commons has media related to Alfred Tarski Wikiquote has quotations related to Alfred Tarski Stanford Encyclopedia of Philosophy Tarski s Truth Definitions by Wilfred Hodges Alfred Tarski by Mario Gomez Torrente Algebraic Propositional Logic by Ramon Jansana Includes a fairly detailed discussion of Tarski s work on these topics Tarski s Semantic Theory on the Internet Encyclopedia of Philosophy