
Transitive binary relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() All definitions tacitly require the homogeneous relation be transitive: for all if and then |
In mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a set or, more generally, a class X if every non-empty subset S ⊆ X has a minimal element with respect to R; that is, there exists an m ∈ S such that, for every s ∈ S, one does not have s R m. In other words, a relation is well-founded if: Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.
Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, which can be proved when there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1R xn for every natural number n.
In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.
In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo–Fraenkel set theory, asserts that all sets are well-founded.
A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R−1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition. In the context of rewriting systems, a Noetherian relation is also called terminating.
Induction and recursion
An important reason that well-founded relations are interesting is because a version of transfinite induction can be used on them: if (X, R) is a well-founded relation, P(x) is some property of elements of X, and we want to show that
- P(x) holds for all elements x of X,
it suffices to show that:
- If x is an element of X and P(y) is true for all y such that y R x, then P(x) must also be true.
That is,
Well-founded induction is sometimes called Noetherian induction, after Emmy Noether.
On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let (X, R) be a set-like well-founded relation and F a function that assigns an object F(x, g) to each pair of an element x ∈ X and a function g on the initial segment {y: y R x} of X. Then there is a unique function G such that for every x ∈ X,
That is, if we want to construct a function G on X, we may define G(x) using the values of G(y) for y R x.
As an example, consider the well-founded relation (N, S), where N is the set of all natural numbers, and S is the graph of the successor function x ↦ x+1. Then induction on S is the usual mathematical induction, and recursion on S gives primitive recursion. If we consider the order relation (N, <), we obtain complete induction, and course-of-values recursion. The statement that (N, <) is well-founded is also known as the well-ordering principle.
There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all ordinal numbers, the technique is called transfinite induction. When the well-founded set is a set of recursively-defined data structures, the technique is called structural induction. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details.
Examples
Well-founded relations that are not totally ordered include:
- The positive integers {1, 2, 3, ...}, with the order defined by a < b if and only if a divides b and a ≠ b.
- The set of all finite strings over a fixed alphabet, with the order defined by s < t if and only if s is a proper substring of t.
- The set N × N of pairs of natural numbers, ordered by (n1, n2) < (m1, m2) if and only if n1 < m1 and n2 < m2.
- Every class whose elements are sets, with the relation ∈ ("is an element of"). This is the axiom of regularity.
- The nodes of any finite directed acyclic graph, with the relation R defined such that a R b if and only if there is an edge from a to b.
Examples of relations that are not well-founded include:
- The negative integers {−1, −2, −3, ...}, with the usual order, since any unbounded subset has no least element.
- The set of strings over a finite alphabet with more than one element, under the usual (lexicographic) order, since the sequence "B" > "AB" > "AAB" > "AAAB" > ... is an infinite descending chain. This relation fails to be well-founded even though the entire set has a minimum element, namely the empty string.
- The set of non-negative rational numbers (or reals) under the standard ordering, since, for example, the subset of positive rationals (or reals) lacks a minimum.
Other properties
If (X, <) is a well-founded relation and x is an element of X, then the descending chains starting at x are all finite, but this does not mean that their lengths are necessarily bounded. Consider the following example: Let X be the union of the positive integers with a new element ω that is bigger than any integer. Then X is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain ω, n − 1, n − 2, ..., 2, 1 has length n for any n.
The Mostowski collapse lemma implies that set membership is a universal among the extensional well-founded relations: for any set-like well-founded relation R on a class X that is extensional, there exists a class C such that (X, R) is isomorphic to (C, ∈).
Reflexivity
A relation R is said to be reflexive if a R a holds for every a in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order ≤, we have 1 ≥ 1 ≥ 1 ≥ .... To avoid these trivial descending sequences, when working with a partial order ≤, it is common to apply the definition of well foundedness (perhaps implicitly) to the alternate relation < defined such that a < b if and only if a ≤ b and a ≠ b. More generally, when working with a preorder ≤, it is common to use the relation < defined such that a < b if and only if a ≤ b and b ≰ a. In the context of the natural numbers, this means that the relation <, which is well-founded, is used instead of the relation ≤, which is not. In some texts, the definition of a well-founded relation is changed from the definition above to include these conventions.
References
- See Definition 6.21 in Zaring W.M., G. Takeuti (1971). Introduction to axiomatic set theory (2nd, rev. ed.). New York: Springer-Verlag. ISBN 0387900241.
- "Infinite Sequence Property of Strictly Well-Founded Relation". ProofWiki. Retrieved 10 May 2021.
- Fraisse, R. (15 December 2000). Theory of Relations, Volume 145 - 1st Edition (1st ed.). Elsevier. p. 46. ISBN 9780444505422. Retrieved 20 February 2019.
- Bourbaki, N. (1972) Elements of mathematics. Commutative algebra, Addison-Wesley.
Transitive binary relations vteSymmetricAntisymmetricConnectedWell foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetricTotal SemiconnexAnti reflexiveEquivalence relationY Y Preorder Quasiorder Y Partial order Y Y Total preorder Y Y Total order YY Y Prewellordering YY Y Well quasi ordering Y Y Well ordering YYY Y Lattice Y YYY Join semilattice Y Y Y Meet semilattice Y YY Strict partial order Y YYStrict weak order Y YYStrict total order YY YYSymmetricAntisymmetricConnectedWell foundedHas joinsHas meetsReflexiveIrreflexiveAsymmetricDefinitions for all a b displaystyle a b and S displaystyle S neq varnothing aRb bRa displaystyle begin aligned amp aRb Rightarrow amp bRa end aligned aRb and bRa a b displaystyle begin aligned aRb text and amp bRa Rightarrow a amp b end aligned a b aRb or bRa displaystyle begin aligned a neq amp b Rightarrow aRb text or amp bRa end aligned minSexists displaystyle begin aligned min S text exists end aligned a bexists displaystyle begin aligned a vee b text exists end aligned a bexists displaystyle begin aligned a wedge b text exists end aligned aRa displaystyle aRa not aRa displaystyle text not aRa aRb not bRa displaystyle begin aligned aRb Rightarrow text not bRa end aligned Y indicates that the column s property is always true for the row s term at the very left while indicates that the property is not guaranteed in general it might or might not hold For example that every equivalence relation is symmetric but not necessarily antisymmetric is indicated by Y in the Symmetric column and in the Antisymmetric column respectively All definitions tacitly require the homogeneous relation R displaystyle R be transitive for all a b c displaystyle a b c if aRb displaystyle aRb and bRc displaystyle bRc then aRc displaystyle aRc A term s definition may require additional properties that are not listed in this table In mathematics a binary relation R is called well founded or wellfounded or foundational on a set or more generally a class X if every non empty subset S X has a minimal element with respect to R that is there exists an m S such that for every s S one does not have s R m In other words a relation is well founded if S X S m S s S sRm displaystyle forall S subseteq X S neq varnothing implies exists m in S forall s in S lnot s mathrel R m Some authors include an extra condition that R is set like i e that the elements less than any given element form a set Equivalently assuming the axiom of dependent choice a relation is well founded when it contains no infinite descending chains which can be proved when there is no infinite sequence x0 x1 x2 of elements of X such that xn 1R xn for every natural number n In order theory a partial order is called well founded if the corresponding strict order is a well founded relation If the order is a total order then it is called a well order In set theory a set x is called a well founded set if the set membership relation is well founded on the transitive closure of x The axiom of regularity which is one of the axioms of Zermelo Fraenkel set theory asserts that all sets are well founded A relation R is converse well founded upwards well founded or Noetherian on X if the converse relation R 1 is well founded on X In this case R is also said to satisfy the ascending chain condition In the context of rewriting systems a Noetherian relation is also called terminating Induction and recursionAn important reason that well founded relations are interesting is because a version of transfinite induction can be used on them if X R is a well founded relation P x is some property of elements of X and we want to show that P x holds for all elements x of X it suffices to show that If x is an element of X and P y is true for all y such that y R x then P x must also be true That is x X y X yRx P y P x implies x X P x displaystyle forall x in X forall y in X y mathrel R x implies P y implies P x quad text implies quad forall x in X P x Well founded induction is sometimes called Noetherian induction after Emmy Noether On par with induction well founded relations also support construction of objects by transfinite recursion Let X R be a set like well founded relation and F a function that assigns an object F x g to each pair of an element x X and a function g on the initial segment y y R x of X Then there is a unique function G such that for every x X G x F x G y yRx displaystyle G x F left x G vert left y y mathrel R x right right That is if we want to construct a function G on X we may define G x using the values of G y for y R x As an example consider the well founded relation N S where N is the set of all natural numbers and S is the graph of the successor function x x 1 Then induction on S is the usual mathematical induction and recursion on S gives primitive recursion If we consider the order relation N lt we obtain complete induction and course of values recursion The statement that N lt is well founded is also known as the well ordering principle There are other interesting special cases of well founded induction When the well founded relation is the usual ordering on the class of all ordinal numbers the technique is called transfinite induction When the well founded set is a set of recursively defined data structures the technique is called structural induction When the well founded relation is set membership on the universal class the technique is known as induction See those articles for more details ExamplesWell founded relations that are not totally ordered include The positive integers 1 2 3 with the order defined by a lt b if and only if a divides b and a b The set of all finite strings over a fixed alphabet with the order defined by s lt t if and only if s is a proper substring of t The set N N of pairs of natural numbers ordered by n1 n2 lt m1 m2 if and only if n1 lt m1 and n2 lt m2 Every class whose elements are sets with the relation is an element of This is the axiom of regularity The nodes of any finite directed acyclic graph with the relation R defined such that a R b if and only if there is an edge from a to b Examples of relations that are not well founded include The negative integers 1 2 3 with the usual order since any unbounded subset has no least element The set of strings over a finite alphabet with more than one element under the usual lexicographic order since the sequence B gt AB gt AAB gt AAAB gt is an infinite descending chain This relation fails to be well founded even though the entire set has a minimum element namely the empty string The set of non negative rational numbers or reals under the standard ordering since for example the subset of positive rationals or reals lacks a minimum Other propertiesIf X lt is a well founded relation and x is an element of X then the descending chains starting at x are all finite but this does not mean that their lengths are necessarily bounded Consider the following example Let X be the union of the positive integers with a new element w that is bigger than any integer Then X is a well founded set but there are descending chains starting at w of arbitrary great finite length the chain w n 1 n 2 2 1 has length n for any n The Mostowski collapse lemma implies that set membership is a universal among the extensional well founded relations for any set like well founded relation R on a class X that is extensional there exists a class C such that X R is isomorphic to C ReflexivityA relation R is said to be reflexive if a R a holds for every a in the domain of the relation Every reflexive relation on a nonempty domain has infinite descending chains because any constant sequence is a descending chain For example in the natural numbers with their usual order we have 1 1 1 To avoid these trivial descending sequences when working with a partial order it is common to apply the definition of well foundedness perhaps implicitly to the alternate relation lt defined such that a lt b if and only if a b and a b More generally when working with a preorder it is common to use the relation lt defined such that a lt b if and only if a b and b a In the context of the natural numbers this means that the relation lt which is well founded is used instead of the relation which is not In some texts the definition of a well founded relation is changed from the definition above to include these conventions ReferencesSee Definition 6 21 in Zaring W M G Takeuti 1971 Introduction to axiomatic set theory 2nd rev ed New York Springer Verlag ISBN 0387900241 Infinite Sequence Property of Strictly Well Founded Relation ProofWiki Retrieved 10 May 2021 Fraisse R 15 December 2000 Theory of Relations Volume 145 1st Edition 1st ed Elsevier p 46 ISBN 9780444505422 Retrieved 20 February 2019 Bourbaki N 1972 Elements of mathematics Commutative algebra Addison Wesley Just Winfried and Weese Martin 1998 Discovering Modern Set Theory I American Mathematical Society ISBN 0 8218 0266 6 Karel Hrbacek amp Thomas Jech 1999 Introduction to Set Theory 3rd edition Well founded relations pages 251 5 Marcel Dekker ISBN 0 8247 7915 0