
Vegetation is an assemblage of plant species and the ground cover they provide. It is a general term, without specific reference to particular taxa, life forms, structure, spatial extent, or any other specific botanical or geographic characteristics. It is broader than the term flora which refers to species composition. Perhaps the closest synonym is plant community, but vegetation can, and often does, refer to a wider range of spatial scales than that term does, including scales as large as the global. Primeval redwood forests, coastal mangrove stands, sphagnum bogs, desert soil crusts, roadside weed patches, wheat fields, cultivated gardens and lawns; all are encompassed by the term vegetation.
The vegetation type is defined by characteristic dominant species, or a common aspect of the assemblage, such as an elevation range or environmental commonality. The contemporary use of vegetation approximates that of ecologist Frederic Clements' term earth cover, an expression still used by the Bureau of Land Management.

History of definition
The distinction between vegetation (the general appearance of a community) and flora (the taxonomic composition of a community) was first made by Jules Thurmann (1849). Prior to this, the two terms (vegetation and flora) were used indiscriminately, and still are in some contexts. Augustin de Candolle (1820) also made a similar distinction but he used the terms "station" (habitat type) and "habitation" (botanical region). Later, the concept of vegetation would influence the usage of the term biome with the inclusion of the animal element.
Other concepts similar to vegetation are "physiognomy of vegetation" (Humboldt, 1805, 1807) and "formation" (Grisebach, 1838, derived from "Vegetationsform", Martius, 1824).
Departing from Linnean taxonomy, Humboldt established a new science, dividing plant geography between taxonomists who studied plants as taxa and geographers who studied plants as vegetation. The physiognomic approach in the study of vegetation is common among biogeographers working on vegetation on a world scale, or when there is a lack of taxonomic knowledge of someplace (e.g., in the tropics, where biodiversity is commonly high).
The concept of "vegetation type" is more ambiguous. The definition of a specific vegetation type may include not only physiognomy but also floristic and habitat aspects. Furthermore, the phytosociological approach in the study of vegetation relies upon a fundamental unit, the plant association, which is defined upon flora.
An influential, clear and simple classification scheme for types of vegetation was produced by Wagner & von Sydow (1888). Other important works with a physiognomic approach includes Grisebach (1872), Warming (1895, 1909), Schimper (1898), Tansley and Chipp (1926), Rübel (1930), Burtt Davy (1938), Beard (1944, 1955), André Aubréville (1956, 1957), Trochain (1955, 1957), Küchler (1967), Ellenberg and Mueller-Dombois (1967) (see vegetation classification).
Classifications
There are many approaches for the classification of vegetation (physiognomy, flora, ecology, etc.). Much of the work on vegetation classification comes from European and North American ecologists, and they have fundamentally different approaches. In North America, vegetation types are based on a combination of the following criteria: climate pattern, plant habit, phenology and/or growth form, and dominant species. In the current US standard (adopted by the Federal Geographic Data Committee (FGDC), and originally developed by UNESCO and The Nature Conservancy), the classification is hierarchical and incorporates the non-floristic criteria into the upper (most general) five levels and limited floristic criteria only into the lower (most specific) two levels. In Europe, classification often relies much more heavily, sometimes entirely, on floristic (species) composition alone, without explicit reference to climate, phenology or growth forms. It often emphasizes indicator or diagnostic species which may distinguish one classification from another.
In the FGDC standard, the hierarchy levels, from most general to most specific, are: system, class, subclass, group, formation, alliance, and association. The lowest level, or association, is thus the most precisely defined, and incorporates the names of the dominant one to three (usually two) species of a type. An example of a vegetation type defined at the level of class might be "Forest, canopy cover > 60%"; at the level of a formation as "Winter-rain, broad-leaved, evergreen, sclerophyllous, closed-canopy forest"; at the level of alliance as "Arbutus menziesii forest"; and at the level of association as "Arbutus menziesii-Lithocarpus dense flora forest", referring to Pacific madrone-tanoak forests which occur in California and Oregon, US. In practice, the levels of the alliance and/or an association are the most often used, particularly in vegetation mapping, just as the Latin binomial is most often used in discussing particular species in taxonomy and in general communication.
Dynamics
Like all biological systems, plant communities are temporally and spatially dynamic; they change at all possible scales. Dynamism in vegetation is defined primarily as changes in species composition and structure.
Temporal dynamics

Temporally, many processes or events can cause change, but for the sake of simplicity, they can be categorized roughly as abrupt or gradual. Abrupt changes are generally referred to as disturbances; these include things like wildfires, high winds, landslides, floods, avalanches and the like. Their causes are usually external (exogenous) to the community—they are natural processes occurring (mostly) independently of the natural processes of the community (such as germination, growth, death, etc.). Such events can change vegetation structure and composition very quickly and for long periods, and they can do so over large areas. Very few ecosystems are without some disturbance as a regular and recurring part of the long-term system dynamic. Fire and wind disturbances are prevalent throughout many vegetation types worldwide. Fire is particularly potent because of its ability to destroy not only living plants but also the seeds, spores, and living meristems representing the potential next generation, and because of fire's impact on fauna populations, soil characteristics and other ecosystem elements and processes (for further discussion of this topic see fire ecology).
Temporal change at a slower pace is ubiquitous; it comprises the ecological succession field. Succession is the relatively gradual structure and taxonomic composition change that arises as the vegetation modifies various environmental variables over time, including light, water, and nutrient levels. These modifications change the suite of species most adapted to grow, survive, and reproduce in an area, causing floristic changes. These floristic changes contribute to structural changes inherent in plant growth even in the absence of species changes (especially where plants have a large maximum size, i.e., trees), causing slow and broadly predictable changes in the vegetation. Succession can be interrupted at any time by disturbance, setting the system back to a previous state or off on another trajectory altogether. Because of this, successional processes may or may not lead to some static, final state. Moreover, accurately predicting the characteristics of such a state, even if it does arise, is not always possible. In short, vegetative communities are subject to many variables that set limits on future conditions' predictability.
Spatial dynamics
Generally, the larger an area under consideration, the more likely the vegetation will be heterogeneous. Two main factors are at work. First, the temporal dynamics of disturbance and succession are increasingly unlikely to be in synchrony across any area as the size of that area increases. Different areas will be at various developmental stages due to other local histories, particularly their times since the last significant disturbance. This fact interacts with inherent environmental variability (e.g., in soils, climate, topography, etc.), also a function of area. Environmental variability constrains the suite of species that can occupy a given area, and the two factors interact to create a mosaic of vegetation conditions across the landscape. Only in agricultural or horticultural systems does vegetation ever approach perfect uniformity. There is always heterogeneity in natural systems, although its scale and intensity will vary widely.
See also
- Biocoenosis
- Biome
- Ecological succession
- Ecoregion
- Ecosystem
- Plant cover
- Tropical vegetation
- Vegetation and slope stability
References
- "Global Maps". earthobservatory.nasa.gov. 8 May 2018. Archived from the original on 11 July 2017. Retrieved 8 May 2018.
- Burrows, Colin J. (1990). Processes of vegetation change. London: Unwin Hyman. p. 1. ISBN 978-0045800131.
- Introduction to California Plant Life; Robert Ornduff, Phyllis M. Faber, Todd Keeler-Wolf; 2003 ed.; p. 112
- Thurmann, Jules (1849). Essai de phytostatique appliqué à la chaîne du Jura et aux contrées voisines, ou Étude de la dispersion des plantes vasculaires envisagée principalement quant à l'influence des roches soujacentes. Berne: Jent et Gassmann.
- Martins, F. R. & Batalha, M. A. (2011). Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili, J. M., Eisenlohr, P. V.; Fiuza de Melo, M. M. R.; Andrade, L. A.; Meira Neto, J. A. A. (Org.). Fitossociologia no Brasil: métodos e estudos de caso. Vol. 1. Viçosa: Editora UFV. p. 44-85. "Archived copy" (PDF). Archived (PDF) from the original on 2016-09-24. Retrieved 2016-08-25.
{{cite web}}
: CS1 maint: archived copy as title (link). Earlier version, 2003, "Archived copy" (PDF). Archived (PDF) from the original on 2016-08-27. Retrieved 2016-08-25.{{cite web}}
: CS1 maint: archived copy as title (link). - Candolle, Augustin Pyramus de (1820). "Essai élémentaire de géographie botanique". Dictionnare des Sciences Naturelles (in French). 18. Flevrault, Strasbourg.
- Lomolino, Mark V.; Sax, Dov F.; Brown, James H.; Brown (July 2004). Foundations of Biogeography: Classic Papers with Commentaries. University of Chicago Press. pp. 263–275. ISBN 978-0-226-49236-0.
- Coutinho, L. M. (2006). O conceito de bioma. Acta Bot. Bras. 20(1): 13-23, Coutinho, Leopoldo Magno (2006). "O conceito de bioma". Acta Botanica Brasilica. 20: 13–23. doi:10.1590/S0102-33062006000100002..
- Humboldt, Alexander von; Bonpland, Aimé (1805). Essai sur la géographie des plantes : accompagné d'un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu'au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803 (in French). Paris: Chez Levrault, Schoell et compagnie, libraires.
- Humboldt, Alexander von; Bonpland, Aimé (1807). Ideen zu einer Geographie der Pflanzen : nebst einem Naturgemälde der Tropenländer : auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind (in German). Tübingen: Bey F.G. Cotta.
- Garcke, Aug.; Schlechtendal, D. F. L. von (1838). Linnaea : Ein Journal für die Botanik in ihrem ganzen Umfange (in German). Vol. 12. Berlin: F. Dümmler.
- Martius, C. F. P. von. 1824. Die Physiognomie des Pflanzenreiches in Brasilien. Eine Rede, gelesen in der am 14. Febr. 1824 gehaltnen Sitzung der Königlichen Bayerischen Akademie der Wissenschaften. München, Lindauer, [1] Archived 2016-10-12 at the Wayback Machine.
- Ebach, M.C. (2015). Origins of biogeography. The role of biological classification in early plant and animal geography. Dordrecht: Springer, p. 89, [2].
- Beard, J.S. (1978). Whittaker, R. H. (ed.). Classification of Plant Communities. Springer Science & Business Media. pp. 33–64. ISBN 978-94-009-9183-5.
- Eiten, George (June 1992). "How names are used for vegetation". Journal of Vegetation Science. 3 (3): 419–424. Bibcode:1992JVegS...3..419E. doi:10.2307/3235768. JSTOR 3235768.
- Walter, B. M. T. (2006). Fitofisionomias do bioma Cerrado: síntese terminológica e relações florísticas. Doctoral dissertation, Universidade de Brasília, p. 10, "Archived copy" (PDF). Archived (PDF) from the original on 2016-08-26. Retrieved 2016-08-26.
{{cite web}}
: CS1 maint: archived copy as title (link). - Rizzini, C.T. 1997. Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. 2 ed. Rio de Janeiro: Âmbito Cultural Edições, p. 7-11.
- Cox, C. Barry; Moore, Peter D.; Ladle, Richard J. (2016-05-31). Biogeography: An Ecological and Evolutionary Approach. John Wiley & Sons. p. 20. ISBN 978-1-118-96858-1.
- "Sydow-Wagners Methodischer Schul-Atlas (1888-1944)". www.atlassen.info. Retrieved 2023-02-07.
- de Laubenfels, D. J. 1975. Mapping the World's Vegetation: Regionalization of Formation and Flora. Syracuse University Press: Syracuse, NY.
- Küchler, A. W.; Zonneveld, I. S. (2012-12-06). Vegetation mapping. Springer Science & Business Media. pp. 67–80. ISBN 978-94-009-3083-4.
- Sharma, P. D. (2012). Ecology And Environment. Rastogi Publications. p. 140. ISBN 978-81-7133-905-1.
- Mueller-Dombois, D. (1984). Woodwell, G. M. (ed.). "Classification and Mapping of Plant Communities: a Review with Emphasis on Tropical Vegetation" (PDF). bse.carnegiescience.edu. New York: J Wiley and Sons. pp. 21–88. Archived from the original (PDF) on July 17, 2010. Retrieved 2023-02-07.
Further reading
- Archibold, O. W. Ecology of World Vegetation. New York: Springer Publishing, 1994.
- Barbour, M. G. and W. D. Billings (editors). North American Terrestrial Vegetation. Cambridge: Cambridge University Press, 1999.
- Barbour, M.G, J.H. Burk, and W.D. Pitts. "Terrestrial Plant Ecology". Menlo Park: Benjamin Cummings, 1987.
- Box, E. O. 1981. Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. Tasks for Vegetation Science, vol. 1. The Hague: Dr. W. Junk BV. 258 pp., Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography.
- Breckle, S-W. Walter's Vegetation of the Earth. New York: Springer Publishing, 2002.
- Burrows, C. J. Processes of Vegetation Change. Oxford: Routledge Press, 1990.
- Ellenberg, H. 1988. Vegetation ecology of central Europe. Cambridge University Press, Cambridge, Vegetation Ecology of Central Europe.
- Feldmeyer-Christie, E., N. E. Zimmerman, and S. Ghosh. Modern Approaches In Vegetation Monitoring. Budapest: Akademiai Kiado, 2005.
- Gleason, H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53:1-20.
- Grime, J.P. 1987. Plant strategies and vegetation processes. Wiley Interscience, New York NY.
- Kabat, P., et al. (editors). Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System. Heidelberg: Springer-Verlag 2004.
- MacArthur, R.H. and E. O. Wilson. The theory of Island Biogeography. Princeton: Princeton University Press. 1967
- Mueller-Dombois, D., and H. Ellenberg. Aims and Methods of Vegetation Ecology. New York: John Wiley & Sons, 1974. The Blackburn Press, 2003 (reprint).
- UNESCO. 1973. International Classification and Mapping of Vegetation. Series 6, Ecology and Conservation, Paris, [3].
- Van der Maarel, E. Vegetation Ecology. Oxford: Blackwell Publishers, 2004.
- Vankat, J. L. The Natural Vegetation of North America. Krieger Publishing Co., 1992.
External links
Classification
- Terrestrial Vegetation of the United States Volume I – The National Vegetation Classification System: Development, Status, and Applications[usurped] (PDF)
- Federal Geographic Data Committee Vegetation Subcommittee
- Vegetation Classification Standard [FGDC-STD-005, June 1997] (PDF)
- Classifying Vegetation Condition: Vegetation Assets States and Transitions (VAST)
Mapping-related
- Interactive world vegetation map by Howstuffworks
- USGS - NPS Vegetation Mapping Program
- Checklist of Online Vegetation and Plant Distribution Maps
- VEGETATION image processing and archiving centre at VITO
- Spot-VEGETATION programme web page
Climate diagrams
- Climate Diagrams Explained Archived 2018-09-28 at the Wayback Machine
- ClimateDiagrams.com Provides climate diagrams for more than 3000 weather stations and for different climate periods from all over the world. Users can also create their own diagrams with their own data.
- WBCS Worldwide Climate Diagrams
Vegetation is an assemblage of plant species and the ground cover they provide It is a general term without specific reference to particular taxa life forms structure spatial extent or any other specific botanical or geographic characteristics It is broader than the term flora which refers to species composition Perhaps the closest synonym is plant community but vegetation can and often does refer to a wider range of spatial scales than that term does including scales as large as the global Primeval redwood forests coastal mangrove stands sphagnum bogs desert soil crusts roadside weed patches wheat fields cultivated gardens and lawns all are encompassed by the term vegetation source source source source These maps show a scale or index of greenness based on several factors the number and type of plants leafiness and plant health Where foliage is dense and plants are growing quickly the index is high represented in dark green Regions with sparse vegetation and a low vegetation index are shown in tan Based on measurements from the Moderate Resolution Imaging Spectroradiometer MODIS on NASA s Terra satellite Areas where there is no data are gray The vegetation type is defined by characteristic dominant species or a common aspect of the assemblage such as an elevation range or environmental commonality The contemporary use of vegetation approximates that of ecologist Frederic Clements term earth cover an expression still used by the Bureau of Land Management Picture of Vegetative EnvironmentHistory of definitionThe distinction between vegetation the general appearance of a community and flora the taxonomic composition of a community was first made by Jules Thurmann 1849 Prior to this the two terms vegetation and flora were used indiscriminately and still are in some contexts Augustin de Candolle 1820 also made a similar distinction but he used the terms station habitat type and habitation botanical region Later the concept of vegetation would influence the usage of the term biome with the inclusion of the animal element Other concepts similar to vegetation are physiognomy of vegetation Humboldt 1805 1807 and formation Grisebach 1838 derived from Vegetationsform Martius 1824 Departing from Linnean taxonomy Humboldt established a new science dividing plant geography between taxonomists who studied plants as taxa and geographers who studied plants as vegetation The physiognomic approach in the study of vegetation is common among biogeographers working on vegetation on a world scale or when there is a lack of taxonomic knowledge of someplace e g in the tropics where biodiversity is commonly high The concept of vegetation type is more ambiguous The definition of a specific vegetation type may include not only physiognomy but also floristic and habitat aspects Furthermore the phytosociological approach in the study of vegetation relies upon a fundamental unit the plant association which is defined upon flora An influential clear and simple classification scheme for types of vegetation was produced by Wagner amp von Sydow 1888 Other important works with a physiognomic approach includes Grisebach 1872 Warming 1895 1909 Schimper 1898 Tansley and Chipp 1926 Rubel 1930 Burtt Davy 1938 Beard 1944 1955 Andre Aubreville 1956 1957 Trochain 1955 1957 Kuchler 1967 Ellenberg and Mueller Dombois 1967 see vegetation classification ClassificationsBiomes classified by vegetation Tundra Taiga Temperate broadleaf and mixed forest Temperate grasslands Subtropical moist forest Mediterranean Monsoon forest Desert Xeric shrubland Dry steppe Semi desert Grass savanna Tree savanna Tropical and subtropical dry forest Tropical rainforest Alpine tundra Montane forest There are many approaches for the classification of vegetation physiognomy flora ecology etc Much of the work on vegetation classification comes from European and North American ecologists and they have fundamentally different approaches In North America vegetation types are based on a combination of the following criteria climate pattern plant habit phenology and or growth form and dominant species In the current US standard adopted by the Federal Geographic Data Committee FGDC and originally developed by UNESCO and The Nature Conservancy the classification is hierarchical and incorporates the non floristic criteria into the upper most general five levels and limited floristic criteria only into the lower most specific two levels In Europe classification often relies much more heavily sometimes entirely on floristic species composition alone without explicit reference to climate phenology or growth forms It often emphasizes indicator or diagnostic species which may distinguish one classification from another In the FGDC standard the hierarchy levels from most general to most specific are system class subclass group formation alliance andassociation The lowest level or association is thus the most precisely defined and incorporates the names of the dominant one to three usually two species of a type An example of a vegetation type defined at the level of class might be Forest canopy cover gt 60 at the level of a formation as Winter rain broad leaved evergreen sclerophyllous closed canopy forest at the level of alliance as Arbutus menziesii forest and at the level of association as Arbutus menziesii Lithocarpus dense flora forest referring to Pacific madrone tanoak forests which occur in California and Oregon US In practice the levels of the alliance and or an association are the most often used particularly in vegetation mapping just as the Latin binomial is most often used in discussing particular species in taxonomy and in general communication DynamicsLike all biological systems plant communities are temporally and spatially dynamic they change at all possible scales Dynamism in vegetation is defined primarily as changes in species composition and structure Temporal dynamics Vegetation types at the time of Last Glacial Maximum Temporally many processes or events can cause change but for the sake of simplicity they can be categorized roughly as abrupt or gradual Abrupt changes are generally referred to as disturbances these include things like wildfires high winds landslides floods avalanches and the like Their causes are usually external exogenous to the community they are natural processes occurring mostly independently of the natural processes of the community such as germination growth death etc Such events can change vegetation structure and composition very quickly and for long periods and they can do so over large areas Very few ecosystems are without some disturbance as a regular and recurring part of the long term system dynamic Fire and wind disturbances are prevalent throughout many vegetation types worldwide Fire is particularly potent because of its ability to destroy not only living plants but also the seeds spores and living meristems representing the potential next generation and because of fire s impact on fauna populations soil characteristics and other ecosystem elements and processes for further discussion of this topic see fire ecology Temporal change at a slower pace is ubiquitous it comprises the ecological succession field Succession is the relatively gradual structure and taxonomic composition change that arises as the vegetation modifies various environmental variables over time including light water and nutrient levels These modifications change the suite of species most adapted to grow survive and reproduce in an area causing floristic changes These floristic changes contribute to structural changes inherent in plant growth even in the absence of species changes especially where plants have a large maximum size i e trees causing slow and broadly predictable changes in the vegetation Succession can be interrupted at any time by disturbance setting the system back to a previous state or off on another trajectory altogether Because of this successional processes may or may not lead to some static final state Moreover accurately predicting the characteristics of such a state even if it does arise is not always possible In short vegetative communities are subject to many variables that set limits on future conditions predictability Spatial dynamics Generally the larger an area under consideration the more likely the vegetation will be heterogeneous Two main factors are at work First the temporal dynamics of disturbance and succession are increasingly unlikely to be in synchrony across any area as the size of that area increases Different areas will be at various developmental stages due to other local histories particularly their times since the last significant disturbance This fact interacts with inherent environmental variability e g in soils climate topography etc also a function of area Environmental variability constrains the suite of species that can occupy a given area and the two factors interact to create a mosaic of vegetation conditions across the landscape Only in agricultural or horticultural systems does vegetation ever approach perfect uniformity There is always heterogeneity in natural systems although its scale and intensity will vary widely See alsoBiocoenosis Biome Ecological succession Ecoregion Ecosystem Plant cover Tropical vegetation Vegetation and slope stabilityReferences Global Maps earthobservatory nasa gov 8 May 2018 Archived from the original on 11 July 2017 Retrieved 8 May 2018 Burrows Colin J 1990 Processes of vegetation change London Unwin Hyman p 1 ISBN 978 0045800131 Introduction to California Plant Life Robert Ornduff Phyllis M Faber Todd Keeler Wolf 2003 ed p 112 Thurmann Jules 1849 Essai de phytostatique applique a la chaine du Jura et aux contrees voisines ou Etude de la dispersion des plantes vasculaires envisagee principalement quant a l influence des roches soujacentes Berne Jent et Gassmann Martins F R amp Batalha M A 2011 Formas de vida espectro biologico de Raunkiaer e fisionomia da vegetacao In Felfili J M Eisenlohr P V Fiuza de Melo M M R Andrade L A Meira Neto J A A Org Fitossociologia no Brasil metodos e estudos de caso Vol 1 Vicosa Editora UFV p 44 85 Archived copy PDF Archived PDF from the original on 2016 09 24 Retrieved 2016 08 25 a href wiki Template Cite web title Template Cite web cite web a CS1 maint archived copy as title link Earlier version 2003 Archived copy PDF Archived PDF from the original on 2016 08 27 Retrieved 2016 08 25 a href wiki Template Cite web title Template Cite web cite web a CS1 maint archived copy as title link Candolle Augustin Pyramus de 1820 Essai elementaire de geographie botanique Dictionnare des Sciences Naturelles in French 18 Flevrault Strasbourg Lomolino Mark V Sax Dov F Brown James H Brown July 2004 Foundations of Biogeography Classic Papers with Commentaries University of Chicago Press pp 263 275 ISBN 978 0 226 49236 0 Coutinho L M 2006 O conceito de bioma Acta Bot Bras 20 1 13 23 Coutinho Leopoldo Magno 2006 O conceito de bioma Acta Botanica Brasilica 20 13 23 doi 10 1590 S0102 33062006000100002 Humboldt Alexander von Bonpland Aime 1805 Essai sur la geographie des plantes accompagne d un tableau physique des regions equinoxiales fonde sur des mesures executees depuis le dixieme degre de latitude boreale jusqu au dixieme degre de latitude australe pendant les annees 1799 1800 1801 1802 et 1803 in French Paris Chez Levrault Schoell et compagnie libraires Humboldt Alexander von Bonpland Aime 1807 Ideen zu einer Geographie der Pflanzen nebst einem Naturgemalde der Tropenlander auf Beobachtungen und Messungen gegrundet welche vom 10ten Grade nordlicher bis zum 10ten Grade sudlicher Breite in den Jahren 1799 1800 1801 1802 und 1803 angestellt worden sind in German Tubingen Bey F G Cotta Garcke Aug Schlechtendal D F L von 1838 Linnaea Ein Journal fur die Botanik in ihrem ganzen Umfange in German Vol 12 Berlin F Dummler Martius C F P von 1824 Die Physiognomie des Pflanzenreiches in Brasilien Eine Rede gelesen in der am 14 Febr 1824 gehaltnen Sitzung der Koniglichen Bayerischen Akademie der Wissenschaften Munchen Lindauer 1 Archived 2016 10 12 at the Wayback Machine Ebach M C 2015 Origins of biogeography The role of biological classification in early plant and animal geography Dordrecht Springer p 89 2 Beard J S 1978 Whittaker R H ed Classification of Plant Communities Springer Science amp Business Media pp 33 64 ISBN 978 94 009 9183 5 Eiten George June 1992 How names are used for vegetation Journal of Vegetation Science 3 3 419 424 Bibcode 1992JVegS 3 419E doi 10 2307 3235768 JSTOR 3235768 Walter B M T 2006 Fitofisionomias do bioma Cerrado sintese terminologica e relacoes floristicas Doctoral dissertation Universidade de Brasilia p 10 Archived copy PDF Archived PDF from the original on 2016 08 26 Retrieved 2016 08 26 a href wiki Template Cite web title Template Cite web cite web a CS1 maint archived copy as title link Rizzini C T 1997 Tratado de fitogeografia do Brasil aspectos ecologicos sociologicos e floristicos 2 ed Rio de Janeiro Ambito Cultural Edicoes p 7 11 Cox C Barry Moore Peter D Ladle Richard J 2016 05 31 Biogeography An Ecological and Evolutionary Approach John Wiley amp Sons p 20 ISBN 978 1 118 96858 1 Sydow Wagners Methodischer Schul Atlas 1888 1944 www atlassen info Retrieved 2023 02 07 de Laubenfels D J 1975 Mapping the World s Vegetation Regionalization of Formation and Flora Syracuse University Press Syracuse NY Kuchler A W Zonneveld I S 2012 12 06 Vegetation mapping Springer Science amp Business Media pp 67 80 ISBN 978 94 009 3083 4 Sharma P D 2012 Ecology And Environment Rastogi Publications p 140 ISBN 978 81 7133 905 1 Mueller Dombois D 1984 Woodwell G M ed Classification and Mapping of Plant Communities a Review with Emphasis on Tropical Vegetation PDF bse carnegiescience edu New York J Wiley and Sons pp 21 88 Archived from the original PDF on July 17 2010 Retrieved 2023 02 07 Further readingArchibold O W Ecology of World Vegetation New York Springer Publishing 1994 Barbour M G and W D Billings editors North American Terrestrial Vegetation Cambridge Cambridge University Press 1999 Barbour M G J H Burk and W D Pitts Terrestrial Plant Ecology Menlo Park Benjamin Cummings 1987 Box E O 1981 Macroclimate and Plant Forms An Introduction to Predictive Modeling in Phytogeography Tasks for Vegetation Science vol 1 The Hague Dr W Junk BV 258 pp Macroclimate and Plant Forms An Introduction to Predictive Modeling in Phytogeography Breckle S W Walter s Vegetation of the Earth New York Springer Publishing 2002 Burrows C J Processes of Vegetation Change Oxford Routledge Press 1990 Ellenberg H 1988 Vegetation ecology of central Europe Cambridge University Press Cambridge Vegetation Ecology of Central Europe Feldmeyer Christie E N E Zimmerman and S Ghosh Modern Approaches In Vegetation Monitoring Budapest Akademiai Kiado 2005 Gleason H A 1926 The individualistic concept of the plant association Bulletin of the Torrey Botanical Club 53 1 20 Grime J P 1987 Plant strategies and vegetation processes Wiley Interscience New York NY Kabat P et al editors Vegetation Water Humans and the Climate A New Perspective on an Interactive System Heidelberg Springer Verlag 2004 MacArthur R H and E O Wilson The theory of Island Biogeography Princeton Princeton University Press 1967 Mueller Dombois D and H Ellenberg Aims and Methods of Vegetation Ecology New York John Wiley amp Sons 1974 The Blackburn Press 2003 reprint UNESCO 1973 International Classification and Mapping of Vegetation Series 6 Ecology and Conservation Paris 3 Van der Maarel E Vegetation Ecology Oxford Blackwell Publishers 2004 Vankat J L The Natural Vegetation of North America Krieger Publishing Co 1992 External linksClassification Terrestrial Vegetation of the United States Volume I The National Vegetation Classification System Development Status and Applications usurped PDF Federal Geographic Data Committee Vegetation Subcommittee Vegetation Classification Standard FGDC STD 005 June 1997 PDF Classifying Vegetation Condition Vegetation Assets States and Transitions VAST Mapping related Interactive world vegetation map by Howstuffworks USGS NPS Vegetation Mapping Program Checklist of Online Vegetation and Plant Distribution Maps VEGETATION image processing and archiving centre at VITO Spot VEGETATION programme web pageClimate diagrams Climate Diagrams Explained Archived 2018 09 28 at the Wayback Machine ClimateDiagrams com Provides climate diagrams for more than 3000 weather stations and for different climate periods from all over the world Users can also create their own diagrams with their own data WBCS Worldwide Climate Diagrams