The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small to be seen with a microscope, in constant, random motion. These particles are now known to be the atoms or molecules of the gas. The kinetic theory of gases uses their collisions with each other and with the walls of their container to explain the relationship between the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity.
The basic version of the model describes an ideal gas. It treats the collisions as perfectly elastic and as the only interaction between the particles, which are additionally assumed to be much smaller than their average distance apart.
Due to the time reversibility of microscopic dynamics (microscopic reversibility), the kinetic theory is also connected to the principle of detailed balance, in terms of the fluctuation-dissipation theorem (for Brownian motion) and the Onsager reciprocal relations.
The theory was historically significant as the first explicit exercise of the ideas of statistical mechanics.
History
Kinetic theory of matter
Antiquity
In about 50 BCE, the Roman philosopher Lucretius proposed that apparently static macroscopic bodies were composed on a small scale of rapidly moving atoms all bouncing off each other. This Epicurean atomistic point of view was rarely considered in the subsequent centuries, when Aristotlean ideas were dominant.[citation needed]
Modern era
"Heat is motion"
One of the first and boldest statements on the relationship between motion of particles and heat was by the English philosopher Francis Bacon in 1620. "It must not be thought that heat generates motion, or motion heat (though in some respects this be true), but that the very essence of heat ... is motion and nothing else." "not a ... motion of the whole, but of the small particles of the body." In 1623, in The Assayer, Galileo Galilei, in turn, argued that heat, pressure, smell and other phenomena perceived by our senses are apparent properties only, caused by the movement of particles, which is a real phenomenon.
In 1665, in Micrographia, the English polymath Robert Hooke repeated Bacon's assertion, and in 1675, his colleague, Anglo-Irish scientist Robert Boyle noted that a hammer's "impulse" is transformed into the motion of a nail's constituent particles, and that this type of motion is what heat consists of. Boyle also believed that all macroscopic properties, including color, taste and elasticity, are caused by and ultimately consist of nothing but the arrangement and motion of indivisible particles of matter. In a lecture of 1681, Hooke asserted a direct relationship between the temperature of an object and the speed of its internal particles. "Heat ... is nothing but the internal Motion of the Particles of [a] Body; and the hotter a Body is, the more violently are the Particles moved." In a manuscript published 1720, the English philosopher John Locke made a very similar statement: "What in our sensation is heat, in the object is nothing but motion." Locke too talked about the motion of the internal particles of the object, which he referred to as its "insensible parts".
In his 1744 paper Meditations on the Cause of Heat and Cold, Russian polymath Mikhail Lomonosov made a relatable appeal to everyday experience to gain acceptance of the microscopic and kinetic nature of matter and heat:
Movement should not be denied based on the fact it is not seen. Who would deny that the leaves of trees move when rustled by a wind, despite it being unobservable from large distances? Just as in this case motion remains hidden due to perspective, it remains hidden in warm bodies due to the extremely small sizes of the moving particles. In both cases, the viewing angle is so small that neither the object nor their movement can be seen.
Lomonosov also insisted that movement of particles is necessary for the processes of dissolution, extraction and diffusion, providing as examples the dissolution and diffusion of salts by the action of water particles on the of the “molecules of salt”, the dissolution of metals in mercury, and the extraction of plant pigments by alcohol.
Also the transfer of heat was explained by the motion of particles. Around 1760, Scottish physicist and chemist Joseph Black wrote: "Many have supposed that heat is a tremulous ... motion of the particles of matter, which ... motion they imagined to be communicated from one body to another."
Kinetic theory of gases
In 1738 Daniel Bernoulli published Hydrodynamica, which laid the basis for the kinetic theory of gases. In this work, Bernoulli posited the argument, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the pressure of the gas, and that their average kinetic energy determines the temperature of the gas. The theory was not immediately accepted, in part because conservation of energy had not yet been established, and it was not obvious to physicists how the collisions between molecules could be perfectly elastic.: 36–37
Pioneers of the kinetic theory, whose work was also largely neglected by their contemporaries, were Mikhail Lomonosov (1747),Georges-Louis Le Sage (ca. 1780, published 1818),John Herapath (1816) and John James Waterston (1843), which connected their research with the development of mechanical explanations of gravitation.
In 1856 August Krönig created a simple gas-kinetic model, which only considered the translational motion of the particles. In 1857 Rudolf Clausius developed a similar, but more sophisticated version of the theory, which included translational and, contrary to Krönig, also rotational and vibrational molecular motions. In this same work he introduced the concept of mean free path of a particle. In 1859, after reading a paper about the diffusion of molecules by Clausius, Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range. This was the first-ever statistical law in physics. Maxwell also gave the first mechanical argument that molecular collisions entail an equalization of temperatures and hence a tendency towards equilibrium. In his 1873 thirteen page article 'Molecules', Maxwell states: "we are told that an 'atom' is a material point, invested and surrounded by 'potential forces' and that when 'flying molecules' strike against a solid body in constant succession it causes what is called pressure of air and other gases." In 1871, Ludwig Boltzmann generalized Maxwell's achievement and formulated the Maxwell–Boltzmann distribution. The logarithmic connection between entropy and probability was also first stated by Boltzmann.
At the beginning of the 20th century, atoms were considered by many physicists to be purely hypothetical constructs, rather than real objects. An important turning point was Albert Einstein's (1905) and Marian Smoluchowski's (1906) papers on Brownian motion, which succeeded in making certain accurate quantitative predictions based on the kinetic theory.
Following the development of the Boltzmann equation, a framework for its use in developing transport equations was developed independently by David Enskog and Sydney Chapman in 1917 and 1916. The framework provided a route to prediction of the transport properties of dilute gases, and became known as Chapman–Enskog theory. The framework was gradually expanded throughout the following century, eventually becoming a route to prediction of transport properties in real, dense gases.
Assumptions
The application of kinetic theory to ideal gases makes the following assumptions:
- The gas consists of very small particles. This smallness of their size is such that the sum of the volume of the individual gas molecules is negligible compared to the volume of the container of the gas. This is equivalent to stating that the average distance separating the gas particles is large compared to their size, and that the elapsed time during a collision between particles and the container's wall is negligible when compared to the time between successive collisions.
- The number of particles is so large that a statistical treatment of the problem is well justified. This assumption is sometimes referred to as the thermodynamic limit.
- The rapidly moving particles constantly collide among themselves and with the walls of the container, and all these collisions are perfectly elastic.
- Interactions (i.e. collisions) between particles are strictly binary and uncorrelated, meaning that there are no three-body (or higher) interactions, and the particles have no memory.
- Except during collisions, the interactions among molecules are negligible. They exert no other forces on one another.
Thus, the dynamics of particle motion can be treated classically, and the equations of motion are time-reversible.
As a simplifying assumption, the particles are usually assumed to have the same mass as one another; however, the theory can be generalized to a mass distribution, with each mass type contributing to the gas properties independently of one another in agreement with Dalton's law of partial pressures. Many of the model's predictions are the same whether or not collisions between particles are included, so they are often neglected as a simplifying assumption in derivations (see below).
More modern developments, such as the revised Enskog theory and the extended Bhatnagar–Gross–Krook model, relax one or more of the above assumptions. These can accurately describe the properties of dense gases, and gases with internal degrees of freedom, because they include the volume of the particles as well as contributions from intermolecular and intramolecular forces as well as quantized molecular rotations, quantum rotational-vibrational symmetry effects, and electronic excitation. While theories relaxing the assumptions that the gas particles occupy negligible volume and that collisions are strictly elastic have been successful, it has been shown that relaxing the requirement of interactions being binary and uncorrelated will eventually lead to divergent results.
Equilibrium properties
Pressure and kinetic energy
In the kinetic theory of gases, the pressure is assumed to be equal to the force (per unit area) exerted by the individual gas atoms or molecules hitting and rebounding from the gas container's surface.
Consider a gas particle traveling at velocity, , along the -direction in an enclosed volume with characteristic length, , cross-sectional area, , and volume, . The gas particle encounters a boundary after characteristic time
The momentum of the gas particle can then be described as
We combine the above with Newton's second law, which states that the force experienced by a particle is related to the time rate of change of its momentum, such that
Now consider a large number, , of gas particles with random orientation in a three-dimensional volume. Because the orientation is random, the average particle speed, , in every direction is identical
Further, assume that the volume is symmetrical about its three dimensions, , such that The total surface area on which the gas particles act is therefore
The pressure exerted by the collisions of the gas particles with the surface can then be found by adding the force contribution of every particle and dividing by the interior surface area of the volume,
The total translational kinetic energy of the gas is defined as providing the result
This is an important, non-trivial result of the kinetic theory because it relates pressure, a macroscopic property, to the translational kinetic energy of the molecules, which is a microscopic property.
Temperature and kinetic energy
Rewriting the above result for the pressure as , we may combine it with the ideal gas law
1 |
where is the Boltzmann constant and is the absolute temperature defined by the ideal gas law, to obtain which leads to a simplified expression of the average translational kinetic energy per molecule, The translational kinetic energy of the system is times that of a molecule, namely . The temperature, is related to the translational kinetic energy by the description above, resulting in
2 |
which becomes
3 |
Equation (3) is one important result of the kinetic theory: The average molecular kinetic energy is proportional to the ideal gas law's absolute temperature. From equations (1) and (3), we have
4 |
Thus, the product of pressure and volume per mole is proportional to the average translational molecular kinetic energy.
Equations (1) and (4) are called the "classical results", which could also be derived from statistical mechanics; for more details, see:
The equipartition theorem requires that kinetic energy is partitioned equally between all kinetic degrees of freedom, D. A monatomic gas is axially symmetric about each spatial axis, so that D = 3 comprising translational motion along each axis. A diatomic gas is axially symmetric about only one axis, so that D = 5, comprising translational motion along three axes and rotational motion along two axes. A polyatomic gas, like water, is not radially symmetric about any axis, resulting in D = 6, comprising 3 translational and 3 rotational degrees of freedom.
Because the equipartition theorem requires that kinetic energy is partitioned equally, the total kinetic energy is
Thus, the energy added to the system per gas particle kinetic degree of freedom is
Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas (D = 3) is where is the Avogadro constant, and R is the ideal gas constant.
Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily:
- per mole: 12.47 J/K
- per molecule: 20.7 yJ/K = 129 μeV/K
At standard temperature (273.15 K), the kinetic energy can also be obtained:
- per mole: 3406 J
- per molecule: 5.65 zJ = 35.2 meV.
At higher temperatures (typically thousands of kelvins), vibrational modes become active to provide additional degrees of freedom, creating a temperature-dependence on D and the total molecular energy. Quantum statistical mechanics is needed to accurately compute these contributions.
Collisions with container wall
For an ideal gas in equilibrium, the rate of collisions with the container wall and velocity distribution of particles hitting the container wall can be calculated based on naive kinetic theory, and the results can be used for analyzing effusive flow rates, which is useful in applications such as the gaseous diffusion method for isotope separation.
Assume that in the container, the number density (number per unit volume) is and that the particles obey Maxwell's velocity distribution:
Then for a small area on the container wall, a particle with speed at angle from the normal of the area , will collide with the area within time interval , if it is within the distance from the area . Therefore, all the particles with speed at angle from the normal that can reach area within time interval are contained in the tilted pipe with a height of and a volume of .
The total number of particles that reach area within time interval also depends on the velocity distribution; All in all, it calculates to be:
Integrating this over all appropriate velocities within the constraint , , yields the number of atomic or molecular collisions with a wall of a container per unit area per unit time:
This quantity is also known as the "impingement rate" in vacuum physics. Note that to calculate the average speed of the Maxwell's velocity distribution, one has to integrate over , , .
The momentum transfer to the container wall from particles hitting the area with speed at angle from the normal, in time interval is: Integrating this over all appropriate velocities within the constraint , , yields the pressure (consistent with Ideal gas law): If this small area is punched to become a small hole, the effusive flow rate will be:
Combined with the ideal gas law, this yields
The above expression is consistent with Graham's law.
To calculate the velocity distribution of particles hitting this small area, we must take into account that all the particles with that hit the area within the time interval are contained in the tilted pipe with a height of and a volume of ; Therefore, compared to the Maxwell distribution, the velocity distribution will have an extra factor of : with the constraint , , . The constant can be determined by the normalization condition to be , and overall:
Speed of molecules
From the kinetic energy formula it can be shown that where v is in m/s, T is in kelvin, and m is the mass of one molecule of gas in kg. The most probable (or mode) speed is 81.6% of the root-mean-square speed , and the mean (arithmetic mean, or average) speed is 92.1% of the rms speed (isotropic distribution of speeds).
See:
- Average,
- Root-mean-square speed
- Arithmetic mean
- Mean
- Mode (statistics)
Mean free path
In kinetic theory of gases, the mean free path is the average distance traveled by a molecule, or a number of molecules per volume, before they make their first collision. Let be the collision cross section of one molecule colliding with another. As in the previous section, the number density is defined as the number of molecules per (extensive) volume, or . The collision cross section per volume or collision cross section density is , and it is related to the mean free path by
Notice that the unit of the collision cross section per volume is reciprocal of length.
Transport properties
The kinetic theory of gases deals not only with gases in thermodynamic equilibrium, but also very importantly with gases not in thermodynamic equilibrium. This means using Kinetic Theory to consider what are known as "transport properties", such as viscosity, thermal conductivity, mass diffusivity and thermal diffusion.
In its most basic form, Kinetic gas theory is only applicable to dilute gases. The extension of Kinetic gas theory to dense gas mixtures, Revised Enskog Theory, was developed in 1983-1987 by E. G. D. Cohen, and , building on work by and .
Viscosity and kinetic momentum
In books on elementary kinetic theory one can find results for dilute gas modeling that are used in many fields. Derivation of the kinetic model for shear viscosity usually starts by considering a Couette flow where two parallel plates are separated by a gas layer. The upper plate is moving at a constant velocity to the right due to a force F. The lower plate is stationary, and an equal and opposite force must therefore be acting on it to keep it at rest. The molecules in the gas layer have a forward velocity component which increase uniformly with distance above the lower plate. The non-equilibrium flow is superimposed on a Maxwell-Boltzmann equilibrium distribution of molecular motions.
Inside a dilute gas in a Couette flow setup, let be the forward velocity of the gas at a horizontal flat layer (labeled as ); is along the horizontal direction. The number of molecules arriving at the area on one side of the gas layer, with speed at angle from the normal, in time interval is
These molecules made their last collision at , where is the mean free path. Each molecule will contribute a forward momentum of where plus sign applies to molecules from above, and minus sign below. Note that the forward velocity gradient can be considered to be constant over a distance of mean free path.
Integrating over all appropriate velocities within the constraint , , yields the forward momentum transfer per unit time per unit area (also known as shear stress):
The net rate of momentum per unit area that is transported across the imaginary surface is thus
Combining the above kinetic equation with Newton's law of viscosity gives the equation for shear viscosity, which is usually denoted when it is a dilute gas:
Combining this equation with the equation for mean free path gives
Maxwell-Boltzmann distribution gives the average (equilibrium) molecular speed as where is the most probable speed. We note that
and insert the velocity in the viscosity equation above. This gives the well known equation (with subsequently estimated below) for shear viscosity for dilute gases: and is the molar mass. The equation above presupposes that the gas density is low (i.e. the pressure is low). This implies that the transport of momentum through the gas due to the translational motion of molecules is much larger than the transport due to momentum being transferred between molecules during collisions. The transfer of momentum between molecules is explicitly accounted for in Revised Enskog theory, which relaxes the requirement of a gas being dilute. The viscosity equation further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic and hard core particles of spherical shape. This assumption of elastic, hard core spherical molecules, like billiard balls, implies that the collision cross section of one molecule can be estimated by
The radius is called collision cross section radius or kinetic radius, and the diameter is called collision cross section diameter or kinetic diameter of a molecule in a monomolecular gas. There are no simple general relation between the collision cross section and the hard core size of the (fairly spherical) molecule. The relation depends on shape of the potential energy of the molecule. For a real spherical molecule (i.e. a noble gas atom or a reasonably spherical molecule) the interaction potential is more like the Lennard-Jones potential or Morse potential which have a negative part that attracts the other molecule from distances longer than the hard core radius. The radius for zero Lennard-Jones potential may then be used as a rough estimate for the kinetic radius. However, using this estimate will typically lead to an erroneous temperature dependency of the viscosity. For such interaction potentials, significantly more accurate results are obtained by numerical evaluation of the required collision integrals.
The expression for viscosity obtained from Revised Enskog Theory reduces to the above expression in the limit of infinite dilution, and can be written as where is a term that tends to zero in the limit of infinite dilution that accounts for excluded volume, and is a term accounting for the transfer of momentum over a non-zero distance between particles during a collision.
Thermal conductivity and heat flux
Following a similar logic as above, one can derive the kinetic model for thermal conductivity of a dilute gas:
Consider two parallel plates separated by a gas layer. Both plates have uniform temperatures, and are so massive compared to the gas layer that they can be treated as thermal reservoirs. The upper plate has a higher temperature than the lower plate. The molecules in the gas layer have a molecular kinetic energy which increases uniformly with distance above the lower plate. The non-equilibrium energy flow is superimposed on a Maxwell-Boltzmann equilibrium distribution of molecular motions.
Let be the molecular kinetic energy of the gas at an imaginary horizontal surface inside the gas layer. The number of molecules arriving at an area on one side of the gas layer, with speed at angle from the normal, in time interval is
These molecules made their last collision at a distance above and below the gas layer, and each will contribute a molecular kinetic energy of where is the specific heat capacity. Again, plus sign applies to molecules from above, and minus sign below. Note that the temperature gradient can be considered to be constant over a distance of mean free path.
Integrating over all appropriate velocities within the constraint , , yields the energy transfer per unit time per unit area (also known as heat flux):
Note that the energy transfer from above is in the direction, and therefore the overall minus sign in the equation. The net heat flux across the imaginary surface is thus
Combining the above kinetic equation with Fourier's law gives the equation for thermal conductivity, which is usually denoted when it is a dilute gas:
Similarly to viscosity, Revised Enskog Theory yields an expression for thermal conductivity that reduces to the above expression in the limit of infinite dilution, and which can be written as where is a term that tends to unity in the limit of infinite dilution, accounting for excluded volume, and is a term accounting for the transfer of energy across a non-zero distance between particles during a collision.
Diffusion coefficient and diffusion flux
Following a similar logic as above, one can derive the kinetic model for mass diffusivity of a dilute gas:
Consider a steady diffusion between two regions of the same gas with perfectly flat and parallel boundaries separated by a layer of the same gas. Both regions have uniform number densities, but the upper region has a higher number density than the lower region. In the steady state, the number density at any point is constant (that is, independent of time). However, the number density in the layer increases uniformly with distance above the lower plate. The non-equilibrium molecular flow is superimposed on a Maxwell–Boltzmann equilibrium distribution of molecular motions.
Let be the number density of the gas at an imaginary horizontal surface inside the layer. The number of molecules arriving at an area on one side of the gas layer, with speed at angle from the normal, in time interval is
These molecules made their last collision at a distance above and below the gas layer, where the local number density is
Again, plus sign applies to molecules from above, and minus sign below. Note that the number density gradient can be considered to be constant over a distance of mean free path.
Integrating over all appropriate velocities within the constraint , , yields the molecular transfer per unit time per unit area (also known as diffusion flux):
Note that the molecular transfer from above is in the direction, and therefore the overall minus sign in the equation. The net diffusion flux across the imaginary surface is thus
Combining the above kinetic equation with Fick's first law of diffusion gives the equation for mass diffusivity, which is usually denoted when it is a dilute gas:
The corresponding expression obtained from Revised Enskog Theory may be written as where is a factor that tends to unity in the limit of infinite dilution, which accounts for excluded volume and the variation chemical potentials with density.
Detailed balance
Fluctuation and dissipation
The kinetic theory of gases entails that due to the microscopic reversibility of the gas particles' detailed dynamics, the system must obey the principle of detailed balance. Specifically, the fluctuation-dissipation theorem applies to the Brownian motion (or diffusion) and the drag force, which leads to the Einstein–Smoluchowski equation: where
- D is the mass diffusivity;
- μ is the "mobility", or the ratio of the particle's terminal drift velocity to an applied force, μ = vd/F;
- kB is the Boltzmann constant;
- T is the absolute temperature.
Note that the mobility μ = vd/F can be calculated based on the viscosity of the gas; Therefore, the Einstein–Smoluchowski equation also provides a relation between the mass diffusivity and the viscosity of the gas.
Onsager reciprocal relations
The mathematical similarities between the expressions for shear viscocity, thermal conductivity and diffusion coefficient of the ideal (dilute) gas is not a coincidence; It is a direct result of the Onsager reciprocal relations (i.e. the detailed balance of the reversible dynamics of the particles), when applied to the convection (matter flow due to temperature gradient, and heat flow due to pressure gradient) and advection (matter flow due to the velocity of particles, and momentum transfer due to pressure gradient) of the ideal (dilute) gas.
See also
- Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations
- Boltzmann equation
- Chapman–Enskog theory
- Collision theory
- Critical temperature
- Gas laws
- Heat
- Interatomic potential
- Magnetohydrodynamics
- Maxwell–Boltzmann distribution
- Mixmaster universe
- Thermodynamics
- Vicsek model
- Vlasov equation
References
Citations
- Maxwell, J. C. (1867). "On the Dynamical Theory of Gases". Philosophical Transactions of the Royal Society of London. 157: 49–88. doi:10.1098/rstl.1867.0004. S2CID 96568430.
- Bacon, F. (1902) [1620]. Dewey, J. (ed.). Novum Organum: Or True Suggestions for the Interpretation of Nature. P. F. Collier & son. p. 153.
- Bacon, F. (1902) [1620]. Dewey, J. (ed.). Novum Organum: Or True Suggestions for the Interpretation of Nature. P. F. Collier & son. p. 156.
- Galilei 1957, p. 273-4.
- Adriaans, Pieter (2024), Zalta, Edward N.; Nodelman, Uri (eds.), "Information", The Stanford Encyclopedia of Philosophy (Summer 2024 ed.), Metaphysics Research Lab, Stanford University, p. "3.4 Physics"
- Hooke, Robert (1665). Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon. Printed by Jo. Martyn, and Ja. Allestry, Printers to the Royal Society. p. 12. (Facsimile, with pagination)
{{cite book}}
: CS1 maint: postscript (link) - Hooke, Robert (1665). Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon. Printed by Jo. Martyn, and Ja. Allestry, Printers to the Royal Society. p. 12. (Machine-readable, no pagination)
{{cite book}}
: CS1 maint: postscript (link) - Boyle, Robert (1675). Experiments, notes, &c., about the mechanical origine or production of divers particular qualities: Among which is inserted a discourse of the imperfection of the chymist's doctrine of qualities; together with some reflections upon the hypothesis of alcali and acidum. Printed by E. Flesher, for R. Davis. pp. 61–62.
- Chalmers, Alan (2019), Zalta, Edward N. (ed.), "Atomism from the 17th to the 20th Century", The Stanford Encyclopedia of Philosophy (Spring 2019 ed.), Metaphysics Research Lab, Stanford University, p. "2.1 Atomism and the Mechanical Philosophy"
- Hooke, Robert (1705) [1681]. The posthumous works of Robert Hooke ... containing his Cutlerian lectures, and other discourses, read at the meetings of the illustrious Royal Society ... Illustrated with sculptures. To these discourses is prefixt the author's life, giving an account of his studies and employments, with an enumeration of the many experiments, instruments, contrivances and inventions, by him made and produc'd as Curator of Experiments to the Royal Society. Publish'd by Richard Waller. Printed by Sam. Smith and Benj. Walford, (Printers to the Royal Society). p. 116.
- Locke, John (1720). A collection of several pieces of Mr. John Locke, never before printed, or not extant in his works. Printed by J. Bettenham for R. Francklin. p. 224 – via Internet Archive.
- Locke, John (1720). A collection of several pieces of Mr. John Locke, never before printed, or not extant in his works. Printed by J. Bettenham for R. Francklin. p. 224 – via Google Play Books.
- Lomonosov, Mikhail Vasil'evich (1970) [1750]. "Meditations on the Cause of Heat and Cold". In Leicester, Henry M. (ed.). Mikhail Vasil'evich Lomonosov on the Corpuscular Theory. Harvard University Press. p. 100.
- Lomonosov, Mikhail Vasil'evich (1970) [1750]. "Meditations on the Cause of Heat and Cold". In Leicester, Henry M. (ed.). Mikhail Vasil'evich Lomonosov on the Corpuscular Theory. Harvard University Press. pp. 102–3.
- Black, Joseph (1807). Robinson, John (ed.). Lectures on the Elements of Chemistry: Delivered in the University of Edinburgh. Mathew Carey. p. 80.
- L.I Ponomarev; I.V Kurchatov (1 January 1993). The Quantum Dice. CRC Press. ISBN 978-0-7503-0251-7.
- Lomonosov 1758
- Le Sage 1780/1818
- Herapath 1816, 1821
- Waterston 1843
- Krönig 1856
- Clausius 1857
- See:
- Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres," Philosophical Magazine, 4th series, 19 : 19–32.
- Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another," Philosophical Magazine, 4th series, 20 : 21–37.
- Mahon, Basil (2003). The Man Who Changed Everything – the Life of James Clerk Maxwell. Hoboken, NJ: Wiley. ISBN 0-470-86171-1. OCLC 52358254.
- Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium". Studies in History and Philosophy of Modern Physics. 57: 53–65. arXiv:1702.01411. Bibcode:2017SHPMP..57...53G. doi:10.1016/j.shpsb.2017.01.001. S2CID 38272381.
- Maxwell 1873
- Einstein 1905
- Smoluchowski 1906
- Chang, Raymond; Thoman, John W. Jr. (2014). Physical Chemistry for the Chemical Sciences. New York, NY: University Science Books. p. 37.
- van Enk, Steven J.; Nienhuis, Gerard (1991-12-01). "Inelastic collisions and gas-kinetic effects of light". Physical Review A. 44 (11): 7615–7625. Bibcode:1991PhRvA..44.7615V. doi:10.1103/PhysRevA.44.7615. PMID 9905900.
- McQuarrie, Donald A. (1976). Statistical Mechanics. New York, NY: University Science Press.
- Cohen, E. G. D. (1993-03-15). "Fifty years of kinetic theory". Physica A: Statistical Mechanics and Its Applications. 194 (1): 229–257. Bibcode:1993PhyA..194..229C. doi:10.1016/0378-4371(93)90357-A. ISSN 0378-4371.
- The average kinetic energy of a fluid is proportional to the root mean-square velocity, which always exceeds the mean velocity - Kinetic Molecular Theory[usurped]
- Configuration integral (statistical mechanics) Archived 2012-04-28 at the Wayback Machine
- Chang, Raymond; Thoman, John W. Jr. (2014). Physical Chemistry for the Chemical Sciences. New York: University Science Books. pp. 56–61.
- "5.62 Physical Chemistry II" (PDF). MIT OpenCourseWare.
- Lòpez de Haro, M.; Cohen, E. G. D.; Kincaid, J. M. (1983). "The Enskog theory for multicomponent mixtures. I. Linear transport theory". The Journal of Chemical Physics. 78 (5): 2746–2759. Bibcode:1983JChPh..78.2746L. doi:10.1063/1.444985.
- Kincaid, J. M.; Lòpez de Haro, M.; Cohen, E. G. D. (1983). "The Enskog theory for multicomponent mixtures. II. Mutual diffusion". The Journal of Chemical Physics. 79 (9): 4509–4521. doi:10.1063/1.446388.
- Lòpez de Haro, M.; Cohen, E. G. D. (1984). "The Enskog theory for multicomponent mixtures. III. Transport properties of dense binary mixtures with one tracer component". The Journal of Chemical Physics. 80 (1): 408–415. Bibcode:1984JChPh..80..408L. doi:10.1063/1.446463.
- Kincaid, J. M.; Cohen, E. G. D.; Lòpez de Haro, M. (1987). "The Enskog theory for multicomponent mixtures. IV. Thermal diffusion". The Journal of Chemical Physics. 86 (2): 963–975. Bibcode:1987JChPh..86..963K. doi:10.1063/1.452243.
- van Beijeren, H.; Ernst, M. H. (1973). "The non-linear Enskog-Boltzmann equation". Physics Letters A. 43 (4): 367–368. Bibcode:1973PhLA...43..367V. doi:10.1016/0375-9601(73)90346-0. hdl:1874/36979.
- Sears, F.W.; Salinger, G.L. (1975). "10". Thermodynamics, Kinetic Theory, and Statistical Thermodynamics (3 ed.). Reading, Massachusetts, USA: Addison-Wesley Publishing Company, Inc. pp. 286–291. ISBN 978-0201068948.
- Hildebrand, J.H. (1976). "Viscosity of dilute gases and vapors". Proc Natl Acad Sci U S A. 76 (12): 4302–4303. Bibcode:1976PNAS...73.4302H. doi:10.1073/pnas.73.12.4302. PMC 431439. PMID 16592372.
- Dill, Ken A.; Bromberg, Sarina (2003). Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science. p. 327. ISBN 9780815320517.
Sources cited
- Clausius, R. (1857), "Ueber die Art der Bewegung, welche wir Wärme nennen", Annalen der Physik, 176 (3): 353–379, Bibcode:1857AnP...176..353C, doi:10.1002/andp.18571760302
- de Groot, S. R., W. A. van Leeuwen and Ch. G. van Weert (1980), Relativistic Kinetic Theory, North-Holland, Amsterdam.
- Galilei, Galileo (1957) [1623]. "The Assayer". In Drake, Stillman (ed.). Discoveries and Opinions of Galileo (PDF). Doubleday.
- Einstein, A. (1905), "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" (PDF), Annalen der Physik, 17 (8): 549–560, Bibcode:1905AnP...322..549E, doi:10.1002/andp.19053220806
- Grad, Harold (1949), "On the Kinetic Theory of Rarefied Gases.", Communications on Pure and Applied Mathematics, 2 (4): 331–407, doi:10.1002/cpa.3160020403
- Herapath, J. (1816), "On the physical properties of gases", Annals of Philosophy, Robert Baldwin: 56–60
- Herapath, J. (1821), "On the Causes, Laws and Phenomena of Heat, Gases, Gravitation", Annals of Philosophy, 9, Baldwin, Cradock, and Joy: 273–293
- Krönig, A. (1856), "Grundzüge einer Theorie der Gase", Annalen der Physik, 99 (10): 315–322, Bibcode:1856AnP...175..315K, doi:10.1002/andp.18561751008
- Le Sage, G.-L. (1818), "Physique Mécanique des Georges-Louis Le Sage", in Prévost, Pierre (ed.), Deux Traites de Physique Mécanique, Geneva & Paris: J.J. Paschoud, pp. 1–186
- Liboff, R. L. (1990), Kinetic Theory, Prentice-Hall, Englewood Cliffs, N. J.
- Lomonosov, M. (1970) [1758], "On the Relation of the Amount of Material and Weight", in Henry M. Leicester (ed.), Mikhail Vasil'evich Lomonosov on the Corpuscular Theory, Cambridge: Harvard University Press, pp. 224–233
- Mahon, Basil (2003), The Man Who Changed Everything – the Life of James Clerk Maxwell, Hoboken, New Jersey: Wiley, ISBN 0-470-86171-1
- Maxwell, James Clerk (1873), "Molecules", Nature, 8 (204): 437–441, Bibcode:1873Natur...8..437., doi:10.1038/008437a0
- Smoluchowski, M. (1906), "Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen", Annalen der Physik, 21 (14): 756–780, Bibcode:1906AnP...326..756V, doi:10.1002/andp.19063261405
- Waterston, John James (1843), Thoughts on the Mental Functions (reprinted in his Papers, 3, 167, 183.)
- Williams, M. M. R. (1971). Mathematical Methods in Particle Transport Theory. Butterworths, London. ISBN 9780408700696.
{{cite book}}
: CS1 maint: location missing publisher (link)
Further reading
- Sydney Chapman and Thomas George Cowling (1939/1970), The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, (first edition 1939, second edition 1952), third edition 1970 prepared in co-operation with D. Burnett, Cambridge University Press, London
- Joseph Oakland Hirschfelder, Charles Francis Curtiss, and Robert Byron Bird (1964), Molecular Theory of Gases and Liquids, revised edition (Wiley-Interscience), ISBN 978-0471400653
- Richard Lawrence Liboff (2003), Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, third edition (Springer), ISBN 978-0-387-21775-8
- and Henning Struchtrup Archived 2021-07-25 at the Wayback Machine (2016), "Macroscopic and kinetic modelling of rarefied polyatomic gases", Journal of Fluid Mechanics, 806, 437–505, DOI 10.1017/jfm.2016.604
External links
- PHYSICAL CHEMISTRY – Gases[usurped]
- Early Theories of Gases
- Thermodynamics Archived 2017-02-28 at the Wayback Machine - a chapter from an online textbook
- Temperature and Pressure of an Ideal Gas: The Equation of State on Project PHYSNET.
- Introduction to the kinetic molecular theory of gases, from The Upper Canada District School Board
- Java animation illustrating the kinetic theory from University of Arkansas
- Flowchart linking together kinetic theory concepts, from HyperPhysics
- Interactive Java Applets allowing high school students to experiment and discover how various factors affect rates of chemical reactions.
- https://www.youtube.com/watch?v=47bF13o8pb8&list=UUXrJjdDeqLgGjJbP1sMnH8A A demonstration apparatus for the thermal agitation in gases.
The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases Its introduction allowed many principal concepts of thermodynamics to be established It treats a gas as composed of numerous particles too small to be seen with a microscope in constant random motion These particles are now known to be the atoms or molecules of the gas The kinetic theory of gases uses their collisions with each other and with the walls of their container to explain the relationship between the macroscopic properties of gases such as volume pressure and temperature as well as transport properties such as viscosity thermal conductivity and mass diffusivity The temperature of the ideal gas is proportional to the average kinetic energy of its particles The size of helium atoms relative to their spacing is shown to scale under 1 950 atmospheres of pressure The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature The basic version of the model describes an ideal gas It treats the collisions as perfectly elastic and as the only interaction between the particles which are additionally assumed to be much smaller than their average distance apart Due to the time reversibility of microscopic dynamics microscopic reversibility the kinetic theory is also connected to the principle of detailed balance in terms of the fluctuation dissipation theorem for Brownian motion and the Onsager reciprocal relations The theory was historically significant as the first explicit exercise of the ideas of statistical mechanics HistoryKinetic theory of matter Antiquity In about 50 BCE the Roman philosopher Lucretius proposed that apparently static macroscopic bodies were composed on a small scale of rapidly moving atoms all bouncing off each other This Epicurean atomistic point of view was rarely considered in the subsequent centuries when Aristotlean ideas were dominant citation needed Modern era Heat is motion Francis Bacon One of the first and boldest statements on the relationship between motion of particles and heat was by the English philosopher Francis Bacon in 1620 It must not be thought that heat generates motion or motion heat though in some respects this be true but that the very essence of heat is motion and nothing else not a motion of the whole but of the small particles of the body In 1623 in The Assayer Galileo Galilei in turn argued that heat pressure smell and other phenomena perceived by our senses are apparent properties only caused by the movement of particles which is a real phenomenon John Locke In 1665 in Micrographia the English polymath Robert Hooke repeated Bacon s assertion and in 1675 his colleague Anglo Irish scientist Robert Boyle noted that a hammer s impulse is transformed into the motion of a nail s constituent particles and that this type of motion is what heat consists of Boyle also believed that all macroscopic properties including color taste and elasticity are caused by and ultimately consist of nothing but the arrangement and motion of indivisible particles of matter In a lecture of 1681 Hooke asserted a direct relationship between the temperature of an object and the speed of its internal particles Heat is nothing but the internal Motion of the Particles of a Body and the hotter a Body is the more violently are the Particles moved In a manuscript published 1720 the English philosopher John Locke made a very similar statement What in our sensation is heat in the object is nothing but motion Locke too talked about the motion of the internal particles of the object which he referred to as its insensible parts Catherine the Great visiting Mikhail Lomonosov In his 1744 paper Meditations on the Cause of Heat and Cold Russian polymath Mikhail Lomonosov made a relatable appeal to everyday experience to gain acceptance of the microscopic and kinetic nature of matter and heat Movement should not be denied based on the fact it is not seen Who would deny that the leaves of trees move when rustled by a wind despite it being unobservable from large distances Just as in this case motion remains hidden due to perspective it remains hidden in warm bodies due to the extremely small sizes of the moving particles In both cases the viewing angle is so small that neither the object nor their movement can be seen Lomonosov also insisted that movement of particles is necessary for the processes of dissolution extraction and diffusion providing as examples the dissolution and diffusion of salts by the action of water particles on the of the molecules of salt the dissolution of metals in mercury and the extraction of plant pigments by alcohol Also the transfer of heat was explained by the motion of particles Around 1760 Scottish physicist and chemist Joseph Black wrote Many have supposed that heat is a tremulous motion of the particles of matter which motion they imagined to be communicated from one body to another Kinetic theory of gases Daniel BernoulliHydrodynamica front cover In 1738 Daniel Bernoulli published Hydrodynamica which laid the basis for the kinetic theory of gases In this work Bernoulli posited the argument that gases consist of great numbers of molecules moving in all directions that their impact on a surface causes the pressure of the gas and that their average kinetic energy determines the temperature of the gas The theory was not immediately accepted in part because conservation of energy had not yet been established and it was not obvious to physicists how the collisions between molecules could be perfectly elastic 36 37 Pioneers of the kinetic theory whose work was also largely neglected by their contemporaries were Mikhail Lomonosov 1747 Georges Louis Le Sage ca 1780 published 1818 John Herapath 1816 and John James Waterston 1843 which connected their research with the development of mechanical explanations of gravitation In 1856 August Kronig created a simple gas kinetic model which only considered the translational motion of the particles In 1857 Rudolf Clausius developed a similar but more sophisticated version of the theory which included translational and contrary to Kronig also rotational and vibrational molecular motions In this same work he introduced the concept of mean free path of a particle In 1859 after reading a paper about the diffusion of molecules by Clausius Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities which gave the proportion of molecules having a certain velocity in a specific range This was the first ever statistical law in physics Maxwell also gave the first mechanical argument that molecular collisions entail an equalization of temperatures and hence a tendency towards equilibrium In his 1873 thirteen page article Molecules Maxwell states we are told that an atom is a material point invested and surrounded by potential forces and that when flying molecules strike against a solid body in constant succession it causes what is called pressure of air and other gases In 1871 Ludwig Boltzmann generalized Maxwell s achievement and formulated the Maxwell Boltzmann distribution The logarithmic connection between entropy and probability was also first stated by Boltzmann At the beginning of the 20th century atoms were considered by many physicists to be purely hypothetical constructs rather than real objects An important turning point was Albert Einstein s 1905 and Marian Smoluchowski s 1906 papers on Brownian motion which succeeded in making certain accurate quantitative predictions based on the kinetic theory Following the development of the Boltzmann equation a framework for its use in developing transport equations was developed independently by David Enskog and Sydney Chapman in 1917 and 1916 The framework provided a route to prediction of the transport properties of dilute gases and became known as Chapman Enskog theory The framework was gradually expanded throughout the following century eventually becoming a route to prediction of transport properties in real dense gases AssumptionsThe application of kinetic theory to ideal gases makes the following assumptions The gas consists of very small particles This smallness of their size is such that the sum of the volume of the individual gas molecules is negligible compared to the volume of the container of the gas This is equivalent to stating that the average distance separating the gas particles is large compared to their size and that the elapsed time during a collision between particles and the container s wall is negligible when compared to the time between successive collisions The number of particles is so large that a statistical treatment of the problem is well justified This assumption is sometimes referred to as the thermodynamic limit The rapidly moving particles constantly collide among themselves and with the walls of the container and all these collisions are perfectly elastic Interactions i e collisions between particles are strictly binary and uncorrelated meaning that there are no three body or higher interactions and the particles have no memory Except during collisions the interactions among molecules are negligible They exert no other forces on one another Thus the dynamics of particle motion can be treated classically and the equations of motion are time reversible As a simplifying assumption the particles are usually assumed to have the same mass as one another however the theory can be generalized to a mass distribution with each mass type contributing to the gas properties independently of one another in agreement with Dalton s law of partial pressures Many of the model s predictions are the same whether or not collisions between particles are included so they are often neglected as a simplifying assumption in derivations see below More modern developments such as the revised Enskog theory and the extended Bhatnagar Gross Krook model relax one or more of the above assumptions These can accurately describe the properties of dense gases and gases with internal degrees of freedom because they include the volume of the particles as well as contributions from intermolecular and intramolecular forces as well as quantized molecular rotations quantum rotational vibrational symmetry effects and electronic excitation While theories relaxing the assumptions that the gas particles occupy negligible volume and that collisions are strictly elastic have been successful it has been shown that relaxing the requirement of interactions being binary and uncorrelated will eventually lead to divergent results Equilibrium propertiesPressure and kinetic energy In the kinetic theory of gases the pressure is assumed to be equal to the force per unit area exerted by the individual gas atoms or molecules hitting and rebounding from the gas container s surface Consider a gas particle traveling at velocity vi textstyle v i along the i displaystyle hat i direction in an enclosed volume with characteristic length Li displaystyle L i cross sectional area Ai displaystyle A i and volume V AiLi displaystyle V A i L i The gas particle encounters a boundary after characteristic time t Li vi displaystyle t L i v i The momentum of the gas particle can then be described as pi mvi mLi t displaystyle p i mv i mL i t We combine the above with Newton s second law which states that the force experienced by a particle is related to the time rate of change of its momentum such that Fi dpidt mLit2 mvi2Li displaystyle F i frac mathrm d p i mathrm d t frac mL i t 2 frac mv i 2 L i Now consider a large number N displaystyle N of gas particles with random orientation in a three dimensional volume Because the orientation is random the average particle speed v textstyle v in every direction is identical vx2 vy2 vz2 displaystyle v x 2 v y 2 v z 2 Further assume that the volume is symmetrical about its three dimensions i j k displaystyle hat i hat j hat k such that V Vi Vj Vk displaystyle V V i V j V k F Fi Fj Fk displaystyle F F i F j F k Ai Aj Ak displaystyle A i A j A k The total surface area on which the gas particles act is therefore A 3Ai displaystyle A 3A i The pressure exerted by the collisions of the N displaystyle N gas particles with the surface can then be found by adding the force contribution of every particle and dividing by the interior surface area of the volume P NF A NLFV displaystyle P frac N overline F A frac NLF V PV NLF N3mv2 displaystyle Rightarrow PV NLF frac N 3 mv 2 The total translational kinetic energy Kt displaystyle K text t of the gas is defined as Kt N2mv2 displaystyle K text t frac N 2 mv 2 providing the result PV 23Kt displaystyle PV frac 2 3 K text t This is an important non trivial result of the kinetic theory because it relates pressure a macroscopic property to the translational kinetic energy of the molecules which is a microscopic property Temperature and kinetic energy Rewriting the above result for the pressure as PV 13Nmv2 textstyle PV frac 1 3 Nmv 2 we may combine it with the ideal gas law PV NkBT displaystyle PV Nk mathrm B T 1 where kB displaystyle k mathrm B is the Boltzmann constant and T displaystyle T is the absolute temperature defined by the ideal gas law to obtain kBT 13mv2 displaystyle k mathrm B T frac 1 3 mv 2 which leads to a simplified expression of the average translational kinetic energy per molecule 12mv2 32kBT displaystyle frac 1 2 mv 2 frac 3 2 k mathrm B T The translational kinetic energy of the system is N displaystyle N times that of a molecule namely Kt 12Nmv2 textstyle K text t frac 1 2 Nmv 2 The temperature T displaystyle T is related to the translational kinetic energy by the description above resulting in T 13mv2kB displaystyle T frac 1 3 frac mv 2 k mathrm B 2 which becomes T 23KtNkB displaystyle T frac 2 3 frac K text t Nk mathrm B 3 Equation 3 is one important result of the kinetic theory The average molecular kinetic energy is proportional to the ideal gas law s absolute temperature From equations 1 and 3 we have PV 23Kt displaystyle PV frac 2 3 K text t 4 Thus the product of pressure and volume per mole is proportional to the average translational molecular kinetic energy Equations 1 and 4 are called the classical results which could also be derived from statistical mechanics for more details see The equipartition theorem requires that kinetic energy is partitioned equally between all kinetic degrees of freedom D A monatomic gas is axially symmetric about each spatial axis so that D 3 comprising translational motion along each axis A diatomic gas is axially symmetric about only one axis so that D 5 comprising translational motion along three axes and rotational motion along two axes A polyatomic gas like water is not radially symmetric about any axis resulting in D 6 comprising 3 translational and 3 rotational degrees of freedom Because the equipartition theorem requires that kinetic energy is partitioned equally the total kinetic energy is K DKt D2Nmv2 displaystyle K DK text t frac D 2 Nmv 2 Thus the energy added to the system per gas particle kinetic degree of freedom is KND 12kBT displaystyle frac K ND frac 1 2 k text B T Therefore the kinetic energy per kelvin of one mole of monatomic ideal gas D 3 is K D2kBNA 32R displaystyle K frac D 2 k text B N text A frac 3 2 R where NA displaystyle N text A is the Avogadro constant and R is the ideal gas constant Thus the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily per mole 12 47 J K per molecule 20 7 yJ K 129 meV K At standard temperature 273 15 K the kinetic energy can also be obtained per mole 3406 J per molecule 5 65 zJ 35 2 meV At higher temperatures typically thousands of kelvins vibrational modes become active to provide additional degrees of freedom creating a temperature dependence on D and the total molecular energy Quantum statistical mechanics is needed to accurately compute these contributions Collisions with container wall For an ideal gas in equilibrium the rate of collisions with the container wall and velocity distribution of particles hitting the container wall can be calculated based on naive kinetic theory and the results can be used for analyzing effusive flow rates which is useful in applications such as the gaseous diffusion method for isotope separation Assume that in the container the number density number per unit volume is n N V displaystyle n N V and that the particles obey Maxwell s velocity distribution fMaxwell vx vy vz dvxdvydvz m2pkBT 3 2e mv22kBTdvxdvydvz displaystyle f text Maxwell v x v y v z dv x dv y dv z left frac m 2 pi k text B T right 3 2 e frac mv 2 2k text B T dv x dv y dv z Then for a small area dA displaystyle dA on the container wall a particle with speed v displaystyle v at angle 8 displaystyle theta from the normal of the area dA displaystyle dA will collide with the area within time interval dt displaystyle dt if it is within the distance vdt displaystyle v dt from the area dA displaystyle dA Therefore all the particles with speed v displaystyle v at angle 8 displaystyle theta from the normal that can reach area dA displaystyle dA within time interval dt displaystyle dt are contained in the tilted pipe with a height of vcos 8 dt displaystyle v cos theta dt and a volume of vcos 8 dAdt displaystyle v cos theta dA dt The total number of particles that reach area dA displaystyle dA within time interval dt displaystyle dt also depends on the velocity distribution All in all it calculates to be nvcos 8 dAdt m2pkBT 3 2e mv22kBT v2sin 8 dvd8dϕ displaystyle nv cos theta dA dt times left frac m 2 pi k text B T right 3 2 e frac mv 2 2k text B T left v 2 sin theta dv d theta d phi right Integrating this over all appropriate velocities within the constraint v gt 0 displaystyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi yields the number of atomic or molecular collisions with a wall of a container per unit area per unit time Jcollision 0p 2cos 8 sin 8 d8 0psin 8 d8 nv 14nv n48kBTpm displaystyle J text collision frac displaystyle int 0 pi 2 cos theta sin theta d theta displaystyle int 0 pi sin theta d theta times n bar v frac 1 4 n bar v frac n 4 sqrt frac 8k mathrm B T pi m This quantity is also known as the impingement rate in vacuum physics Note that to calculate the average speed v displaystyle bar v of the Maxwell s velocity distribution one has to integrate over v gt 0 displaystyle v gt 0 0 lt 8 lt p displaystyle 0 lt theta lt pi 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi The momentum transfer to the container wall from particles hitting the area dA displaystyle dA with speed v displaystyle v at angle 8 displaystyle theta from the normal in time interval dt displaystyle dt is 2mvcos 8 nvcos 8 dAdt m2pkBT 3 2e mv22kBT v2sin 8 dvd8dϕ displaystyle 2mv cos theta times nv cos theta dA dt times left frac m 2 pi k text B T right 3 2 e frac mv 2 2k text B T left v 2 sin theta dv d theta d phi right Integrating this over all appropriate velocities within the constraint v gt 0 displaystyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi yields the pressure consistent with Ideal gas law P 2 0p 2cos2 8 sin 8 d8 0psin 8 d8 nmvrms2 13nmvrms2 23n Ekin nkBT displaystyle P frac displaystyle 2 int 0 pi 2 cos 2 theta sin theta d theta displaystyle int 0 pi sin theta d theta times nmv text rms 2 frac 1 3 nmv text rms 2 frac 2 3 n langle E text kin rangle nk mathrm B T If this small area A displaystyle A is punched to become a small hole the effusive flow rate will be Feffusion JcollisionA nAkBT2pm displaystyle Phi text effusion J text collision A nA sqrt frac k mathrm B T 2 pi m Combined with the ideal gas law this yields Feffusion PA2pmkBT displaystyle Phi text effusion frac PA sqrt 2 pi mk mathrm B T The above expression is consistent with Graham s law To calculate the velocity distribution of particles hitting this small area we must take into account that all the particles with v 8 ϕ displaystyle v theta phi that hit the area dA displaystyle dA within the time interval dt displaystyle dt are contained in the tilted pipe with a height of vcos 8 dt displaystyle v cos theta dt and a volume of vcos 8 dAdt displaystyle v cos theta dA dt Therefore compared to the Maxwell distribution the velocity distribution will have an extra factor of vcos 8 displaystyle v cos theta f v 8 ϕ dvd8dϕ lvcos 8 m2pkT 3 2e mv22kBT v2sin 8dvd8dϕ displaystyle begin aligned f v theta phi dv d theta d phi amp lambda v cos theta left frac m 2 pi kT right 3 2 e frac mv 2 2k mathrm B T v 2 sin theta dv d theta d phi end aligned with the constraint v gt 0 textstyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi The constant l displaystyle lambda can be determined by the normalization condition f v 8 ϕ dvd8dϕ 1 textstyle int f v theta phi dv d theta d phi 1 to be 4 v textstyle 4 bar v and overall f v 8 ϕ dvd8dϕ 12p mkBT 2e mv22kBT v3sin 8cos 8dvd8dϕ v gt 0 0 lt 8 lt p2 0 lt ϕ lt 2p displaystyle begin aligned f v theta phi dv d theta d phi amp frac 1 2 pi left frac m k mathrm B T right 2 e frac mv 2 2k mathrm B T v 3 sin theta cos theta dv d theta d phi end aligned quad v gt 0 0 lt theta lt frac pi 2 0 lt phi lt 2 pi Speed of molecules From the kinetic energy formula it can be shown that vp 2 kBTm displaystyle v text p sqrt 2 cdot frac k mathrm B T m v 2pvp 8p kBTm displaystyle bar v frac 2 sqrt pi v p sqrt frac 8 pi cdot frac k mathrm B T m vrms 32vp 3 kBTm displaystyle v text rms sqrt frac 3 2 v p sqrt 3 cdot frac k mathrm B T m where v is in m s T is in kelvin and m is the mass of one molecule of gas in kg The most probable or mode speed vp displaystyle v text p is 81 6 of the root mean square speed vrms displaystyle v text rms and the mean arithmetic mean or average speed v displaystyle bar v is 92 1 of the rms speed isotropic distribution of speeds See Average Root mean square speed Arithmetic mean Mean Mode statistics Mean free path In kinetic theory of gases the mean free path is the average distance traveled by a molecule or a number of molecules per volume before they make their first collision Let s displaystyle sigma be the collision cross section of one molecule colliding with another As in the previous section the number density n displaystyle n is defined as the number of molecules per extensive volume or n N V displaystyle n N V The collision cross section per volume or collision cross section density is ns displaystyle n sigma and it is related to the mean free path ℓ displaystyle ell byℓ 1ns2 displaystyle ell frac 1 n sigma sqrt 2 Notice that the unit of the collision cross section per volume ns displaystyle n sigma is reciprocal of length Transport propertiesThe kinetic theory of gases deals not only with gases in thermodynamic equilibrium but also very importantly with gases not in thermodynamic equilibrium This means using Kinetic Theory to consider what are known as transport properties such as viscosity thermal conductivity mass diffusivity and thermal diffusion In its most basic form Kinetic gas theory is only applicable to dilute gases The extension of Kinetic gas theory to dense gas mixtures Revised Enskog Theory was developed in 1983 1987 by E G D Cohen and building on work by and Viscosity and kinetic momentum In books on elementary kinetic theory one can find results for dilute gas modeling that are used in many fields Derivation of the kinetic model for shear viscosity usually starts by considering a Couette flow where two parallel plates are separated by a gas layer The upper plate is moving at a constant velocity to the right due to a force F The lower plate is stationary and an equal and opposite force must therefore be acting on it to keep it at rest The molecules in the gas layer have a forward velocity component u displaystyle u which increase uniformly with distance y displaystyle y above the lower plate The non equilibrium flow is superimposed on a Maxwell Boltzmann equilibrium distribution of molecular motions Inside a dilute gas in a Couette flow setup let u0 displaystyle u 0 be the forward velocity of the gas at a horizontal flat layer labeled as y 0 displaystyle y 0 u0 displaystyle u 0 is along the horizontal direction The number of molecules arriving at the area dA displaystyle dA on one side of the gas layer with speed v displaystyle v at angle 8 displaystyle theta from the normal in time interval dt displaystyle dt is nvcos 8 dAdt m2pkBT 3 2e mv22kBT v2sin 8dvd8dϕ displaystyle nv cos theta dA dt times left frac m 2 pi k mathrm B T right 3 2 e frac mv 2 2k mathrm B T v 2 sin theta dv d theta d phi These molecules made their last collision at y ℓcos 8 displaystyle y pm ell cos theta where ℓ displaystyle ell is the mean free path Each molecule will contribute a forward momentum of px m u0 ℓcos 8dudy displaystyle p x pm m left u 0 pm ell cos theta frac du dy right where plus sign applies to molecules from above and minus sign below Note that the forward velocity gradient du dy displaystyle du dy can be considered to be constant over a distance of mean free path Integrating over all appropriate velocities within the constraint v gt 0 displaystyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi yields the forward momentum transfer per unit time per unit area also known as shear stress t 14v n m u0 23ℓdudy displaystyle tau pm frac 1 4 bar v n cdot m left u 0 pm frac 2 3 ell frac du dy right The net rate of momentum per unit area that is transported across the imaginary surface is thus t t t 13v nm ℓdudy displaystyle tau tau tau frac 1 3 bar v nm cdot ell frac du dy Combining the above kinetic equation with Newton s law of viscosity t hdudy displaystyle tau eta frac du dy gives the equation for shear viscosity which is usually denoted h0 displaystyle eta 0 when it is a dilute gas h0 13v nmℓ displaystyle eta 0 frac 1 3 bar v nm ell Combining this equation with the equation for mean free path gives h0 132mv s displaystyle eta 0 frac 1 3 sqrt 2 frac m bar v sigma Maxwell Boltzmann distribution gives the average equilibrium molecular speed as v 2pvp 22pkBTm displaystyle bar v frac 2 sqrt pi v p 2 sqrt frac 2 pi frac k mathrm B T m where vp displaystyle v p is the most probable speed We note that kBNA RandM mNA displaystyle k text B N text A R quad text and quad M mN text A and insert the velocity in the viscosity equation above This gives the well known equation with s displaystyle sigma subsequently estimated below for shear viscosity for dilute gases h0 23p mkBTs 23p MRTsNA displaystyle eta 0 frac 2 3 sqrt pi cdot frac sqrt mk mathrm B T sigma frac 2 3 sqrt pi cdot frac sqrt MRT sigma N text A and M displaystyle M is the molar mass The equation above presupposes that the gas density is low i e the pressure is low This implies that the transport of momentum through the gas due to the translational motion of molecules is much larger than the transport due to momentum being transferred between molecules during collisions The transfer of momentum between molecules is explicitly accounted for in Revised Enskog theory which relaxes the requirement of a gas being dilute The viscosity equation further presupposes that there is only one type of gas molecules and that the gas molecules are perfect elastic and hard core particles of spherical shape This assumption of elastic hard core spherical molecules like billiard balls implies that the collision cross section of one molecule can be estimated by s p 2r 2 pd2 displaystyle sigma pi left 2r right 2 pi d 2 The radius r displaystyle r is called collision cross section radius or kinetic radius and the diameter d displaystyle d is called collision cross section diameter or kinetic diameter of a molecule in a monomolecular gas There are no simple general relation between the collision cross section and the hard core size of the fairly spherical molecule The relation depends on shape of the potential energy of the molecule For a real spherical molecule i e a noble gas atom or a reasonably spherical molecule the interaction potential is more like the Lennard Jones potential or Morse potential which have a negative part that attracts the other molecule from distances longer than the hard core radius The radius for zero Lennard Jones potential may then be used as a rough estimate for the kinetic radius However using this estimate will typically lead to an erroneous temperature dependency of the viscosity For such interaction potentials significantly more accurate results are obtained by numerical evaluation of the required collision integrals The expression for viscosity obtained from Revised Enskog Theory reduces to the above expression in the limit of infinite dilution and can be written as h 1 ah h0 hc displaystyle eta 1 alpha eta eta 0 eta c where ah displaystyle alpha eta is a term that tends to zero in the limit of infinite dilution that accounts for excluded volume and hc displaystyle eta c is a term accounting for the transfer of momentum over a non zero distance between particles during a collision Thermal conductivity and heat flux Following a similar logic as above one can derive the kinetic model for thermal conductivity of a dilute gas Consider two parallel plates separated by a gas layer Both plates have uniform temperatures and are so massive compared to the gas layer that they can be treated as thermal reservoirs The upper plate has a higher temperature than the lower plate The molecules in the gas layer have a molecular kinetic energy e displaystyle varepsilon which increases uniformly with distance y displaystyle y above the lower plate The non equilibrium energy flow is superimposed on a Maxwell Boltzmann equilibrium distribution of molecular motions Let e0 displaystyle varepsilon 0 be the molecular kinetic energy of the gas at an imaginary horizontal surface inside the gas layer The number of molecules arriving at an area dA displaystyle dA on one side of the gas layer with speed v displaystyle v at angle 8 displaystyle theta from the normal in time interval dt displaystyle dt is nvcos 8 dAdt m2pkBT 3 2e mv22kBT v2sin 8 dvd8dϕ displaystyle nv cos theta dA dt times left frac m 2 pi k mathrm B T right 3 2 e frac mv 2 2k text B T v 2 sin theta dv d theta d phi These molecules made their last collision at a distance ℓcos 8 displaystyle ell cos theta above and below the gas layer and each will contribute a molecular kinetic energy of e e0 mcvℓcos 8dTdy displaystyle varepsilon pm left varepsilon 0 pm mc v ell cos theta frac dT dy right where cv displaystyle c v is the specific heat capacity Again plus sign applies to molecules from above and minus sign below Note that the temperature gradient dT dy displaystyle dT dy can be considered to be constant over a distance of mean free path Integrating over all appropriate velocities within the constraint v gt 0 displaystyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi yields the energy transfer per unit time per unit area also known as heat flux qy 14v n e0 23mcvℓdTdy displaystyle q y pm frac 1 4 bar v n cdot left varepsilon 0 pm frac 2 3 mc v ell frac dT dy right Note that the energy transfer from above is in the y displaystyle y direction and therefore the overall minus sign in the equation The net heat flux across the imaginary surface is thus q qy qy 13v nmcvℓdTdy displaystyle q q y q y frac 1 3 bar v nmc v ell frac dT dy Combining the above kinetic equation with Fourier s law q kdTdy displaystyle q kappa frac dT dy gives the equation for thermal conductivity which is usually denoted k0 displaystyle kappa 0 when it is a dilute gas k0 13v nmcvℓ displaystyle kappa 0 frac 1 3 bar v nmc v ell Similarly to viscosity Revised Enskog Theory yields an expression for thermal conductivity that reduces to the above expression in the limit of infinite dilution and which can be written as k akk0 kc displaystyle kappa alpha kappa kappa 0 kappa c where ak displaystyle alpha kappa is a term that tends to unity in the limit of infinite dilution accounting for excluded volume and kc displaystyle kappa c is a term accounting for the transfer of energy across a non zero distance between particles during a collision Diffusion coefficient and diffusion flux Following a similar logic as above one can derive the kinetic model for mass diffusivity of a dilute gas Consider a steady diffusion between two regions of the same gas with perfectly flat and parallel boundaries separated by a layer of the same gas Both regions have uniform number densities but the upper region has a higher number density than the lower region In the steady state the number density at any point is constant that is independent of time However the number density n displaystyle n in the layer increases uniformly with distance y displaystyle y above the lower plate The non equilibrium molecular flow is superimposed on a Maxwell Boltzmann equilibrium distribution of molecular motions Let n0 displaystyle n 0 be the number density of the gas at an imaginary horizontal surface inside the layer The number of molecules arriving at an area dA displaystyle dA on one side of the gas layer with speed v displaystyle v at angle 8 displaystyle theta from the normal in time interval dt displaystyle dt is nvcos 8 dAdt m2pkBT 3 2e mv22kBT v2sin 8 dvd8dϕ displaystyle nv cos theta dA dt times left frac m 2 pi k mathrm B T right 3 2 e frac mv 2 2k text B T v 2 sin theta dv d theta d phi These molecules made their last collision at a distance ℓcos 8 displaystyle ell cos theta above and below the gas layer where the local number density is n n0 ℓcos 8dndy displaystyle n pm left n 0 pm ell cos theta frac dn dy right Again plus sign applies to molecules from above and minus sign below Note that the number density gradient dn dy displaystyle dn dy can be considered to be constant over a distance of mean free path Integrating over all appropriate velocities within the constraint v gt 0 displaystyle v gt 0 0 lt 8 lt p2 textstyle 0 lt theta lt frac pi 2 0 lt ϕ lt 2p displaystyle 0 lt phi lt 2 pi yields the molecular transfer per unit time per unit area also known as diffusion flux Jy 14v n0 23ℓdndy displaystyle J y pm frac 1 4 bar v cdot left n 0 pm frac 2 3 ell frac dn dy right Note that the molecular transfer from above is in the y displaystyle y direction and therefore the overall minus sign in the equation The net diffusion flux across the imaginary surface is thus J Jy Jy 13v ℓdndy displaystyle J J y J y frac 1 3 bar v ell frac dn dy Combining the above kinetic equation with Fick s first law of diffusion J Ddndy displaystyle J D frac dn dy gives the equation for mass diffusivity which is usually denoted D0 displaystyle D 0 when it is a dilute gas D0 13v ℓ displaystyle D 0 frac 1 3 bar v ell The corresponding expression obtained from Revised Enskog Theory may be written as D aDD0 displaystyle D alpha D D 0 where aD displaystyle alpha D is a factor that tends to unity in the limit of infinite dilution which accounts for excluded volume and the variation chemical potentials with density Detailed balanceFluctuation and dissipation The kinetic theory of gases entails that due to the microscopic reversibility of the gas particles detailed dynamics the system must obey the principle of detailed balance Specifically the fluctuation dissipation theorem applies to the Brownian motion or diffusion and the drag force which leads to the Einstein Smoluchowski equation D mkBT displaystyle D mu k text B T where D is the mass diffusivity m is the mobility or the ratio of the particle s terminal drift velocity to an applied force m vd F kB is the Boltzmann constant T is the absolute temperature Note that the mobility m vd F can be calculated based on the viscosity of the gas Therefore the Einstein Smoluchowski equation also provides a relation between the mass diffusivity and the viscosity of the gas Onsager reciprocal relations The mathematical similarities between the expressions for shear viscocity thermal conductivity and diffusion coefficient of the ideal dilute gas is not a coincidence It is a direct result of the Onsager reciprocal relations i e the detailed balance of the reversible dynamics of the particles when applied to the convection matter flow due to temperature gradient and heat flow due to pressure gradient and advection matter flow due to the velocity of particles and momentum transfer due to pressure gradient of the ideal dilute gas See alsoBogoliubov Born Green Kirkwood Yvon hierarchy of equations Boltzmann equation Chapman Enskog theory Collision theory Critical temperature Gas laws Heat Interatomic potential Magnetohydrodynamics Maxwell Boltzmann distribution Mixmaster universe Thermodynamics Vicsek model Vlasov equationReferencesCitations Maxwell J C 1867 On the Dynamical Theory of Gases Philosophical Transactions of the Royal Society of London 157 49 88 doi 10 1098 rstl 1867 0004 S2CID 96568430 Bacon F 1902 1620 Dewey J ed Novum Organum Or True Suggestions for the Interpretation of Nature P F Collier amp son p 153 Bacon F 1902 1620 Dewey J ed Novum Organum Or True Suggestions for the Interpretation of Nature P F Collier amp son p 156 Galilei 1957 p 273 4 Adriaans Pieter 2024 Zalta Edward N Nodelman Uri eds Information The Stanford Encyclopedia of Philosophy Summer 2024 ed Metaphysics Research Lab Stanford University p 3 4 Physics Hooke Robert 1665 Micrographia Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon Printed by Jo Martyn and Ja Allestry Printers to the Royal Society p 12 Facsimile with pagination a href wiki Template Cite book title Template Cite book cite book a CS1 maint postscript link Hooke Robert 1665 Micrographia Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon Printed by Jo Martyn and Ja Allestry Printers to the Royal Society p 12 Machine readable no pagination a href wiki Template Cite book title Template Cite book cite book a CS1 maint postscript link Boyle Robert 1675 Experiments notes amp c about the mechanical origine or production of divers particular qualities Among which is inserted a discourse of the imperfection of the chymist s doctrine of qualities together with some reflections upon the hypothesis of alcali and acidum Printed by E Flesher for R Davis pp 61 62 Chalmers Alan 2019 Zalta Edward N ed Atomism from the 17th to the 20th Century The Stanford Encyclopedia of Philosophy Spring 2019 ed Metaphysics Research Lab Stanford University p 2 1 Atomism and the Mechanical Philosophy Hooke Robert 1705 1681 The posthumous works of Robert Hooke containing his Cutlerian lectures and other discourses read at the meetings of the illustrious Royal Society Illustrated with sculptures To these discourses is prefixt the author s life giving an account of his studies and employments with an enumeration of the many experiments instruments contrivances and inventions by him made and produc d as Curator of Experiments to the Royal Society Publish d by Richard Waller Printed by Sam Smith and Benj Walford Printers to the Royal Society p 116 Locke John 1720 A collection of several pieces of Mr John Locke never before printed or not extant in his works Printed by J Bettenham for R Francklin p 224 via Internet Archive Locke John 1720 A collection of several pieces of Mr John Locke never before printed or not extant in his works Printed by J Bettenham for R Francklin p 224 via Google Play Books Lomonosov Mikhail Vasil evich 1970 1750 Meditations on the Cause of Heat and Cold In Leicester Henry M ed Mikhail Vasil evich Lomonosov on the Corpuscular Theory Harvard University Press p 100 Lomonosov Mikhail Vasil evich 1970 1750 Meditations on the Cause of Heat and Cold In Leicester Henry M ed Mikhail Vasil evich Lomonosov on the Corpuscular Theory Harvard University Press pp 102 3 Black Joseph 1807 Robinson John ed Lectures on the Elements of Chemistry Delivered in the University of Edinburgh Mathew Carey p 80 L I Ponomarev I V Kurchatov 1 January 1993 The Quantum Dice CRC Press ISBN 978 0 7503 0251 7 Lomonosov 1758 Le Sage 1780 1818 Herapath 1816 1821 Waterston 1843 Kronig 1856 Clausius 1857 See Maxwell J C 1860 Illustrations of the dynamical theory of gases Part I On the motions and collisions of perfectly elastic spheres Philosophical Magazine 4th series 19 19 32 Maxwell J C 1860 Illustrations of the dynamical theory of gases Part II On the process of diffusion of two or more kinds of moving particles among one another Philosophical Magazine 4th series 20 21 37 Mahon Basil 2003 The Man Who Changed Everything the Life of James Clerk Maxwell Hoboken NJ Wiley ISBN 0 470 86171 1 OCLC 52358254 Gyenis Balazs 2017 Maxwell and the normal distribution A colored story of probability independence and tendency towards equilibrium Studies in History and Philosophy of Modern Physics 57 53 65 arXiv 1702 01411 Bibcode 2017SHPMP 57 53G doi 10 1016 j shpsb 2017 01 001 S2CID 38272381 Maxwell 1873 Einstein 1905 Smoluchowski 1906 Chang Raymond Thoman John W Jr 2014 Physical Chemistry for the Chemical Sciences New York NY University Science Books p 37 van Enk Steven J Nienhuis Gerard 1991 12 01 Inelastic collisions and gas kinetic effects of light Physical Review A 44 11 7615 7625 Bibcode 1991PhRvA 44 7615V doi 10 1103 PhysRevA 44 7615 PMID 9905900 McQuarrie Donald A 1976 Statistical Mechanics New York NY University Science Press Cohen E G D 1993 03 15 Fifty years of kinetic theory Physica A Statistical Mechanics and Its Applications 194 1 229 257 Bibcode 1993PhyA 194 229C doi 10 1016 0378 4371 93 90357 A ISSN 0378 4371 The average kinetic energy of a fluid is proportional to the root mean square velocity which always exceeds the mean velocity Kinetic Molecular Theory usurped Configuration integral statistical mechanics Archived 2012 04 28 at the Wayback Machine Chang Raymond Thoman John W Jr 2014 Physical Chemistry for the Chemical Sciences New York University Science Books pp 56 61 5 62 Physical Chemistry II PDF MIT OpenCourseWare Lopez de Haro M Cohen E G D Kincaid J M 1983 The Enskog theory for multicomponent mixtures I Linear transport theory The Journal of Chemical Physics 78 5 2746 2759 Bibcode 1983JChPh 78 2746L doi 10 1063 1 444985 Kincaid J M Lopez de Haro M Cohen E G D 1983 The Enskog theory for multicomponent mixtures II Mutual diffusion The Journal of Chemical Physics 79 9 4509 4521 doi 10 1063 1 446388 Lopez de Haro M Cohen E G D 1984 The Enskog theory for multicomponent mixtures III Transport properties of dense binary mixtures with one tracer component The Journal of Chemical Physics 80 1 408 415 Bibcode 1984JChPh 80 408L doi 10 1063 1 446463 Kincaid J M Cohen E G D Lopez de Haro M 1987 The Enskog theory for multicomponent mixtures IV Thermal diffusion The Journal of Chemical Physics 86 2 963 975 Bibcode 1987JChPh 86 963K doi 10 1063 1 452243 van Beijeren H Ernst M H 1973 The non linear Enskog Boltzmann equation Physics Letters A 43 4 367 368 Bibcode 1973PhLA 43 367V doi 10 1016 0375 9601 73 90346 0 hdl 1874 36979 Sears F W Salinger G L 1975 10 Thermodynamics Kinetic Theory and Statistical Thermodynamics 3 ed Reading Massachusetts USA Addison Wesley Publishing Company Inc pp 286 291 ISBN 978 0201068948 Hildebrand J H 1976 Viscosity of dilute gases and vapors Proc Natl Acad Sci U S A 76 12 4302 4303 Bibcode 1976PNAS 73 4302H doi 10 1073 pnas 73 12 4302 PMC 431439 PMID 16592372 Dill Ken A Bromberg Sarina 2003 Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology Garland Science p 327 ISBN 9780815320517 Sources cited Clausius R 1857 Ueber die Art der Bewegung welche wir Warme nennen Annalen der Physik 176 3 353 379 Bibcode 1857AnP 176 353C doi 10 1002 andp 18571760302 de Groot S R W A van Leeuwen and Ch G van Weert 1980 Relativistic Kinetic Theory North Holland Amsterdam Galilei Galileo 1957 1623 The Assayer In Drake Stillman ed Discoveries and Opinions of Galileo PDF Doubleday Einstein A 1905 Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen PDF Annalen der Physik 17 8 549 560 Bibcode 1905AnP 322 549E doi 10 1002 andp 19053220806 Grad Harold 1949 On the Kinetic Theory of Rarefied Gases Communications on Pure and Applied Mathematics 2 4 331 407 doi 10 1002 cpa 3160020403 Herapath J 1816 On the physical properties of gases Annals of Philosophy Robert Baldwin 56 60 Herapath J 1821 On the Causes Laws and Phenomena of Heat Gases Gravitation Annals of Philosophy 9 Baldwin Cradock and Joy 273 293 Kronig A 1856 Grundzuge einer Theorie der Gase Annalen der Physik 99 10 315 322 Bibcode 1856AnP 175 315K doi 10 1002 andp 18561751008 Le Sage G L 1818 Physique Mecanique des Georges Louis Le Sage in Prevost Pierre ed Deux Traites de Physique Mecanique Geneva amp Paris J J Paschoud pp 1 186 Liboff R L 1990 Kinetic Theory Prentice Hall Englewood Cliffs N J Lomonosov M 1970 1758 On the Relation of the Amount of Material and Weight in Henry M Leicester ed Mikhail Vasil evich Lomonosov on the Corpuscular Theory Cambridge Harvard University Press pp 224 233 Mahon Basil 2003 The Man Who Changed Everything the Life of James Clerk Maxwell Hoboken New Jersey Wiley ISBN 0 470 86171 1 Maxwell James Clerk 1873 Molecules Nature 8 204 437 441 Bibcode 1873Natur 8 437 doi 10 1038 008437a0 Smoluchowski M 1906 Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen Annalen der Physik 21 14 756 780 Bibcode 1906AnP 326 756V doi 10 1002 andp 19063261405 Waterston John James 1843 Thoughts on the Mental Functions reprinted in his Papers 3 167 183 Williams M M R 1971 Mathematical Methods in Particle Transport Theory Butterworths London ISBN 9780408700696 a href wiki Template Cite book title Template Cite book cite book a CS1 maint location missing publisher link Further readingSydney Chapman and Thomas George Cowling 1939 1970 The Mathematical Theory of Non uniform Gases An Account of the Kinetic Theory of Viscosity Thermal Conduction and Diffusion in Gases first edition 1939 second edition 1952 third edition 1970 prepared in co operation with D Burnett Cambridge University Press London Joseph Oakland Hirschfelder Charles Francis Curtiss and Robert Byron Bird 1964 Molecular Theory of Gases and Liquids revised edition Wiley Interscience ISBN 978 0471400653 Richard Lawrence Liboff 2003 Kinetic Theory Classical Quantum and Relativistic Descriptions third edition Springer ISBN 978 0 387 21775 8 and Henning Struchtrup Archived 2021 07 25 at the Wayback Machine 2016 Macroscopic and kinetic modelling of rarefied polyatomic gases Journal of Fluid Mechanics 806 437 505 DOI 10 1017 jfm 2016 604External linksWikiquote has quotations related to Kinetic theory of gases PHYSICAL CHEMISTRY Gases usurped Early Theories of Gases Thermodynamics Archived 2017 02 28 at the Wayback Machine a chapter from an online textbook Temperature and Pressure of an Ideal Gas The Equation of State on Project PHYSNET Introduction to the kinetic molecular theory of gases from The Upper Canada District School Board Java animation illustrating the kinetic theory from University of Arkansas Flowchart linking together kinetic theory concepts from HyperPhysics Interactive Java Applets allowing high school students to experiment and discover how various factors affect rates of chemical reactions https www youtube com watch v 47bF13o8pb8 amp list UUXrJjdDeqLgGjJbP1sMnH8A A demonstration apparatus for the thermal agitation in gases