
A carbohydrate (/ˌkɑːrboʊˈhaɪdreɪt/) is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula Cm(H2O)n (where m may or may not be different from n), which does not mean the H has covalent bonds with O (for example with CH2O, H has a covalent bond with C but not with O). However, not all carbohydrates conform to this precise stoichiometric definition (e.g., uronic acids, deoxy-sugars such as fucose), nor are all chemicals that do conform to this definition automatically classified as carbohydrates (e.g., formaldehyde and acetic acid).

The term is most common in biochemistry, where it is a synonym of saccharide (from Ancient Greek σάκχαρον (sákkharon) 'sugar'), a group that includes sugars, starch, and cellulose. The saccharides are divided into four chemical groups: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Monosaccharides and disaccharides, the smallest (lower molecular weight) carbohydrates, are commonly referred to as sugars. While the scientific nomenclature of carbohydrates is complex, the names of the monosaccharides and disaccharides very often end in the suffix -ose, which was originally taken from the word glucose (from Ancient Greek γλεῦκος (gleûkos) 'wine, must'), and is used for almost all sugars (e.g., fructose (fruit sugar), sucrose (cane or beet sugar), ribose, lactose (milk sugar)).
Carbohydrates perform numerous roles in living organisms. Polysaccharides serve as an energy store (e.g., starch and glycogen) and as structural components (e.g., cellulose in plants and chitin in arthropods and fungi). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g., ATP, FAD and NAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.
Carbohydrates are central to nutrition and are found in a wide variety of natural and processed foods. Starch is a polysaccharide and is abundant in cereals (wheat, maize, rice), potatoes, and processed food based on cereal flour, such as bread, pizza or pasta. Sugars appear in human diet mainly as table sugar (sucrose, extracted from sugarcane or sugar beets), lactose (abundant in milk), glucose and fructose, both of which occur naturally in honey, many fruits, and some vegetables. Table sugar, milk, or honey is often added to drinks and many prepared foods such as jam, biscuits and cakes.
Cellulose, a polysaccharide found in the cell walls of all plants, is one of the main components of insoluble dietary fiber. Although it is not digestible by humans, cellulose and insoluble dietary fiber generally help maintain a healthy digestive system by facilitating bowel movements. Other polysaccharides contained in dietary fiber include resistant starch and inulin, which feed some bacteria in the microbiota of the large intestine, and are metabolized by these bacteria to yield short-chain fatty acids.
Terminology
In scientific literature, the term "carbohydrate" has many synonyms, like "sugar" (in the broad sense), "saccharide", "ose", "glucide", "hydrate of carbon" or "polyhydroxy compounds with aldehyde or ketone". Some of these terms, especially "carbohydrate" and "sugar", are also used with other meanings.
In food science and in many informal contexts, the term "carbohydrate" often means any food that is particularly rich in the complex carbohydrate starch (such as cereals, bread and pasta) or simple carbohydrates, such as sugar (found in candy, jams, and desserts). This informality is sometimes confusing since it confounds chemical structure and digestibility in humans.
The term "carbohydrate" (or "carbohydrate by difference") refers also to dietary fiber, which is a carbohydrate, but, unlike sugars and starches, fibers are not hydrolyzed by human digestive enzymes. Fiber generally contributes little food energy in humans, but is often included in the calculation of total food energy. The fermentation of soluble fibers by gut microflora can yield short-chain fatty acids, and soluble fiber is estimated to provide about 2 kcal/g.
History
This section needs expansion. You can help by adding to it. (January 2022) |
The history of the discovery regarding carbohydrates dates back around 10,000 years ago in Papua New Guinea during the cultivation of sugarcane during the Neolithic agricultural revolution. The term "carbohydrate" was first proposed by German chemist Carl Schmidt (chemist) in 1844. In 1856, glycogen, a form of carbohydrate storage in animal livers, was discovered by French physiologist Claude Bernard.
Structure
Formerly the name "carbohydrate" was used in chemistry for any compound with the formula Cm (H2O)n. Following this definition, some chemists considered formaldehyde (CH2O) to be the simplest carbohydrate, while others claimed that title for glycolaldehyde. Today, the term is generally understood in the biochemistry sense, which excludes compounds with only one or two carbons and includes many biological carbohydrates which deviate from this formula. For example, while the above representative formulas would seem to capture the commonly known carbohydrates, ubiquitous and abundant carbohydrates often deviate from this. For example, carbohydrates often display chemical groups such as: N-acetyl (e.g., chitin), sulfate (e.g., glycosaminoglycans), carboxylic acid and deoxy modifications (e.g., fucose and sialic acid).
Natural saccharides are generally built of simple carbohydrates called monosaccharides with general formula (CH2O)n where n is three or more. A typical monosaccharide has the structure H–(CHOH)x(C=O)–(CHOH)y–H, that is, an aldehyde or ketone with many hydroxyl groups added, usually one on each carbon atom that is not part of the aldehyde or ketone functional group. Examples of monosaccharides are glucose, fructose, and glyceraldehydes. However, some biological substances commonly called "monosaccharides" do not conform to this formula (e.g., uronic acids and deoxy-sugars such as fucose) and there are many chemicals that do conform to this formula but are not considered to be monosaccharides (e.g., formaldehyde CH2O and inositol (CH2O)6).
The open-chain form of a monosaccharide often coexists with a closed ring form where the aldehyde/ketone carbonyl group carbon (C=O) and hydroxyl group (–OH) react forming a hemiacetal with a new C–O–C bridge.
Monosaccharides can be linked together into what are called polysaccharides (or oligosaccharides) in a large variety of ways. Many carbohydrates contain one or more modified monosaccharide units that have had one or more groups replaced or removed. For example, deoxyribose, a component of DNA, is a modified version of ribose; chitin is composed of repeating units of N-acetyl glucosamine, a nitrogen-containing form of glucose.
Division
Carbohydrates are polyhydroxy aldehydes, ketones, alcohols, acids, their simple derivatives and their polymers having linkages of the acetal type. They may be classified according to their degree of polymerization, and may be divided initially into three principal groups, namely sugars, oligosaccharides and polysaccharides.
Class (degree of polymerization) | Subgroup | Components |
---|---|---|
Sugars (1–2) | Monosaccharides | Glucose, galactose, fructose, xylose |
Disaccharides | Sucrose, lactose, maltose, isomaltulose, trehalose | |
Polyols | Sorbitol, mannitol | |
Oligosaccharides (3–9) | Malto-oligosaccharides | Maltodextrins |
Other oligosaccharides | Raffinose, stachyose, fructo-oligosaccharides | |
Polysaccharides (>9) | Starch | Amylose, amylopectin, modified starches |
Non-starch polysaccharides | Glycogen, Cellulose, Hemicellulose, Pectins, Hydrocolloids |
Monosaccharides
Monosaccharides are the simplest carbohydrates in that they cannot be hydrolyzed to smaller carbohydrates. They are aldehydes or ketones with two or more hydroxyl groups. The general chemical formula of an unmodified monosaccharide is (C•H2O)n, literally a "carbon hydrate". Monosaccharides are important fuel molecules as well as building blocks for nucleic acids. The smallest monosaccharides, for which n=3, are dihydroxyacetone and D- and L-glyceraldehydes.
Classification of monosaccharides
The α and β anomers of glucose. Note the position of the hydroxyl group (red or green) on the anomeric carbon relative to the CH2OH group bound to carbon 5: they either have identical absolute configurations (R,R or S,S) (α), or opposite absolute configurations (R,S or S,R) (β).
Monosaccharides are classified according to three different characteristics: the placement of its carbonyl group, the number of carbon atoms it contains, and its chiral handedness. If the carbonyl group is an aldehyde, the monosaccharide is an aldose; if the carbonyl group is a ketone, the monosaccharide is a ketose. Monosaccharides with three carbon atoms are called trioses, those with four are called tetroses, five are called pentoses, six are hexoses, and so on. These two systems of classification are often combined. For example, glucose is an aldohexose (a six-carbon aldehyde), ribose is an aldopentose (a five-carbon aldehyde), and fructose is a ketohexose (a six-carbon ketone).
Each carbon atom bearing a hydroxyl group (-OH), with the exception of the first and last carbons, are asymmetric, making them stereo centers with two possible configurations each (R or S). Because of this asymmetry, a number of isomers may exist for any given monosaccharide formula. Using Le Bel-van't Hoff rule, the aldohexose D-glucose, for example, has the formula (C·H2O)6, of which four of its six carbons atoms are stereogenic, making D-glucose one of 24=16 possible stereoisomers. In the case of glyceraldehydes, an aldotriose, there is one pair of possible stereoisomers, which are enantiomers and epimers. 1, 3-dihydroxyacetone, the ketose corresponding to the aldose glyceraldehydes, is a symmetric molecule with no stereo centers. The assignment of D or L is made according to the orientation of the asymmetric carbon furthest from the carbonyl group: in a standard Fischer projection if the hydroxyl group is on the right the molecule is a D sugar, otherwise it is an L sugar. The "D-" and "L-" prefixes should not be confused with "d-" or "l-", which indicate the direction that the sugar rotates plane polarized light. This usage of "d-" and "l-" is no longer followed in carbohydrate chemistry.
Ring-straight chain isomerism
The aldehyde or ketone group of a straight-chain monosaccharide will react reversibly with a hydroxyl group on a different carbon atom to form a hemiacetal or hemiketal, forming a heterocyclic ring with an oxygen bridge between two carbon atoms. Rings with five and six atoms are called furanose and pyranose forms, respectively, and exist in equilibrium with the straight-chain form.
During the conversion from straight-chain form to the cyclic form, the carbon atom containing the carbonyl oxygen, called the anomeric carbon, becomes a stereogenic center with two possible configurations: The oxygen atom may take a position either above or below the plane of the ring. The resulting possible pair of stereoisomers is called anomers. In the α anomer, the -OH substituent on the anomeric carbon rests on the opposite side (trans) of the ring from the CH2OH side branch. The alternative form, in which the CH2OH substituent and the anomeric hydroxyl are on the same side (cis) of the plane of the ring, is called the β anomer.
Use in living organisms
Monosaccharides are the major fuel source for metabolism, and glucose is an energy-rich molecule utilized to generate ATP in almost all living organisms. Glucose is a high-energy substrate produced in plants through photosynthesis by combining energy-poor water and carbon dioxide in an endothermic reaction fueled by solar energy. When monosaccharides are not immediately needed, they are often converted to more space-efficient (i.e., less water-soluble) forms, often polysaccharides. In animals, glucose circulating the blood is a major metabolic substrate and is oxidized in the mitochondria to produce ATP for performing useful cellular work. In humans and other animals, serum glucose levels must be regulated carefully to maintain glucose within acceptable limits and prevent the deleterious effects of hypo- or hyperglycemia. Hormones such as insulin and glucagon serve to keep glucose levels in balance: insulin stimulates glucose uptake into the muscle and fat cells when glucose levels are high, whereas glucagon helps to raise glucose levels if they dip too low by stimulating hepatic glucose synthesis. In many animals, including humans, this storage form is glycogen, especially in liver and muscle cells. In plants, starch is used for the same purpose. The most abundant carbohydrate, cellulose, is a structural component of the cell wall of plants and many forms of algae. Ribose is a component of RNA. Deoxyribose is a component of DNA. Lyxose is a component of lyxoflavin found in the human heart.Ribulose and xylulose occur in the pentose phosphate pathway. Galactose, a component of milk sugar lactose, is found in galactolipids in plant cell membranes and in glycoproteins in many tissues. Mannose occurs in human metabolism, especially in the glycosylation of certain proteins. Fructose, or fruit sugar, is found in many plants and humans, it is metabolized in the liver, absorbed directly into the intestines during digestion, and found in semen. Trehalose, a major sugar of insects, is rapidly hydrolyzed into two glucose molecules to support continuous flight.
Disaccharides
Two joined monosaccharides are called a disaccharide, the simplest kind of polysaccharide. Examples include sucrose and lactose. They are composed of two monosaccharide units bound together by a covalent bond known as a glycosidic linkage formed via a dehydration reaction, resulting in the loss of a hydrogen atom from one monosaccharide and a hydroxyl group from the other. The formula of unmodified disaccharides is C12H22O11. Although there are numerous kinds of disaccharides, a handful of disaccharides are particularly notable.
Sucrose, pictured to the right, is the most abundant disaccharide, and the main form in which carbohydrates are transported in plants. It is composed of one D-glucose molecule and one D-fructose molecule. The systematic name for sucrose, O-α-D-glucopyranosyl-(1→2)-D-fructofuranoside, indicates four things:
- Its monosaccharides: glucose and fructose
- Their ring types: glucose is a pyranose and fructose is a furanose
- How they are linked together: the oxygen on carbon number 1 (C1) of α-D-glucose is linked to the C2 of D-fructose.
- The -oside suffix indicates that the anomeric carbon of both monosaccharides participates in the glycosidic bond.
Lactose, a disaccharide composed of one D-galactose molecule and one D-glucose molecule, occurs naturally in mammalian milk. The systematic name for lactose is O-β-D-galactopyranosyl-(1→4)-D-glucopyranose. Other notable disaccharides include maltose (two D-glucoses linked α-1,4) and cellobiose (two D-glucoses linked β-1,4). Disaccharides can be classified into two types: reducing and non-reducing disaccharides. If the functional group is present in bonding with another sugar unit, it is called a reducing disaccharide or biose.
Oligosaccharides and polysaccharides
Oligosaccharides
Oligosaccharides are saccharide polymers composed of three to ten units of monosaccharides, connected via glycosidic linkages, similar to disaccharides. They are usually linked to lipids or amino acids glycosic linkage with oxygen or nitrogen to form glygolipids and glycoproteins, though some, like the raffinose series and the fructooligosaccharides, do not. They have roles in cell recognition and cell adhesion.
Polysaccharides
Nutrition
Carbohydrate consumed in food yields 3.87 kilocalories of energy per gram for simple sugars, and 3.57 to 4.12 kilocalories per gram for complex carbohydrate in most other foods. Relatively high levels of carbohydrate are associated with processed foods or refined foods made from plants, including sweets, cookies and candy, table sugar, honey, soft drinks, breads and crackers, jams and fruit products, pastas and breakfast cereals. Refined carbohydrates from processed foods such as white bread or rice, soft drinks, and desserts are readily digestible, and many are known to have a high glycemic index, which reflects a rapid assimilation of glucose. By contrast, the digestion of whole, unprocessed, fiber-rich foods such as beans, peas, and whole grains produces a slower and steadier release of glucose and energy into the body. Animal-based foods generally have the lowest carbohydrate levels, although milk does contain a high proportion of lactose.
Organisms typically cannot metabolize all types of carbohydrate to yield energy. Glucose is a nearly universal and accessible source of energy. Many organisms also have the ability to metabolize other monosaccharides and disaccharides but glucose is often metabolized first. In Escherichia coli, for example, the lac operon will express enzymes for the digestion of lactose when it is present, but if both lactose and glucose are present, the lac operon is repressed, resulting in the glucose being used first (see: Diauxie). Polysaccharides are also common sources of energy. Many organisms can easily break down starches into glucose; most organisms, however, cannot metabolize cellulose or other polysaccharides such as chitin and arabinoxylans. These carbohydrate types can be metabolized by some bacteria and protists. Ruminants and termites, for example, use microorganisms to process cellulose, fermenting it to caloric short-chain fatty acids. Even though humans lack the enzymes to digest fiber, dietary fiber represents an important dietary element for humans. Fibers promote healthy digestion, help regulate postprandial glucose and insulin levels, reduce cholesterol levels, and promote satiety.
The Institute of Medicine recommends that American and Canadian adults get between 45 and 65% of dietary energy from whole-grain carbohydrates. The Food and Agriculture Organization and World Health Organization jointly recommend that national dietary guidelines set a goal of 55–75% of total energy from carbohydrates, but only 10% directly from sugars (their term for simple carbohydrates). A 2017 Cochrane Systematic Review concluded that there was insufficient evidence to support the claim that whole grain diets can affect cardiovascular disease.
Classification
The term complex carbohydrate was first used in the U.S. Senate Select Committee on Nutrition and Human Needs publication Dietary Goals for the United States (1977) where it was intended to distinguish sugars from other carbohydrates (which were perceived to be nutritionally superior). However, the report put "fruit, vegetables and whole-grains" in the complex carbohydrate column, despite the fact that these may contain sugars as well as polysaccharides. The standard usage, however, is to classify carbohydrates chemically: simple if they are sugars (monosaccharides and disaccharides) and complex if they are polysaccharides (or oligosaccharides). Carbohydrates are sometimes divided into "available carbohydrates", which are absorbed in the small intestine and "unavailable carbohydrates", which pass to the large intestine, where they are subject to fermentation by the gastrointestinal microbiota.
Glycemic index
The glycemic index (GI) and glycemic load concepts characterize the potential for carbohydrates in food to raise blood glucose compared to a reference food (generally pure glucose). Expressed numerically as GI, carbohydrate-containing foods can be grouped as high-GI (score more than 70), moderate-GI (56-69), or low-GI (less than 55) relative to pure glucose (GI=100). Consumption of carbohydrate-rich, high-GI foods causes an abrupt increase in blood glucose concentration that declines rapidly following the meal, whereas low-GI foods with lower carbohydrate content produces a lower blood glucose concentration that returns gradually after the meal.
Glycemic load is a measure relating the quality of carbohydrates in a food (low- vs. high-carbohydrate content – the GI) by the amount of carbohydrates in a single serving of that food.
Health effects of dietary carbohydrate restriction
Low-carbohydrate diets may miss the health advantages – such as increased intake of dietary fiber and phytochemicals – afforded by high-quality plant foods such as legumes and pulses, whole grains, fruits, and vegetables. A "meta-analysis, of moderate quality," included as adverse effects of the diet halitosis, headache and constipation.[better source needed]
Carbohydrate-restricted diets can be as effective as low-fat diets in helping achieve weight loss over the short term when overall calorie intake is reduced. An Endocrine Society scientific statement said that "when calorie intake is held constant [...] body-fat accumulation does not appear to be affected by even very pronounced changes in the amount of fat vs carbohydrate in the diet." In the long term, low-carbohydrate diets do not appear to confer a "metabolic advantage," and effective weight loss or maintenance depends on the level of calorie restriction, not the ratio of macronutrients in a diet. The reasoning of diet advocates that carbohydrates cause undue fat accumulation by increasing blood insulin levels, but a more balanced diet that restricts refined carbohydrates can also reduce serum glucose and insulin levels and may also suppress lipogenesis and promote fat oxidation. However, as far as energy expenditure itself is concerned, the claim that low-carbohydrate diets have a "metabolic advantage" is not supported by clinical evidence. Further, it is not clear how low-carbohydrate dieting affects cardiovascular health, although two reviews showed that carbohydrate restriction may improve lipid markers of cardiovascular disease risk.
Carbohydrate-restricted diets are no more effective than a conventional healthy diet in preventing the onset of type 2 diabetes, but for people with type 2 diabetes, they are a viable option for losing weight or helping with glycemic control. There is limited evidence to support routine use of low-carbohydrate dieting in managing type 1 diabetes. The American Diabetes Association recommends that people with diabetes should adopt a generally healthy diet, rather than a diet focused on carbohydrate or other macronutrients.
An extreme form of low-carbohydrate diet – the ketogenic diet – is established as a medical diet for treating epilepsy. Through celebrity endorsement during the early 21st century, it became a fad diet as a means of weight loss, but with risks of undesirable side effects, such as low energy levels and increased hunger, insomnia, nausea, and gastrointestinal discomfort.[scientific citation needed] The British Dietetic Association named it one of the "top 5 worst celeb diets to avoid in 2018".
Sources
Most dietary carbohydrates contain glucose, either as their only building block (as in the polysaccharides starch and glycogen), or together with another monosaccharide (as in the hetero-polysaccharides sucrose and lactose). Unbound glucose is one of the main ingredients of honey. Glucose is extremely abundant and has been isolated from a variety of natural sources across the world, including male cones of the coniferous tree Wollemia nobilis in Rome, the roots of Ilex asprella plants in China, and straws from rice in California.
Food item | Carbohydrate, total,A including dietary fiber | Total sugars | Free fructose | Free glucose | Sucrose | Ratio of fructose/ glucose | Sucrose as proportion of total sugars (%) |
---|---|---|---|---|---|---|---|
Fruits | |||||||
Apple | 13.8 | 10.4 | 5.9 | 2.4 | 2.1 | 2.0 | 19.9 |
Apricot | 11.1 | 9.2 | 0.9 | 2.4 | 5.9 | 0.7 | 63.5 |
Banana | 22.8 | 12.2 | 4.9 | 5.0 | 2.4 | 1.0 | 20.0 |
Fig, dried | 63.9 | 47.9 | 22.9 | 24.8 | 0.9 | 0.93 | 0.15 |
Grapes | 18.1 | 15.5 | 8.1 | 7.2 | 0.2 | 1.1 | 1 |
Navel orange | 12.5 | 8.5 | 2.25 | 2.0 | 4.3 | 1.1 | 50.4 |
Peach | 9.5 | 8.4 | 1.5 | 2.0 | 4.8 | 0.9 | 56.7 |
Pear | 15.5 | 9.8 | 6.2 | 2.8 | 0.8 | 2.1 | 8.0 |
Pineapple | 13.1 | 9.9 | 2.1 | 1.7 | 6.0 | 1.1 | 60.8 |
Plum | 11.4 | 9.9 | 3.1 | 5.1 | 1.6 | 0.66 | 16.2 |
Vegetables | |||||||
Beet, red | 9.6 | 6.8 | 0.1 | 0.1 | 6.5 | 1.0 | 96.2 |
Carrot | 9.6 | 4.7 | 0.6 | 0.6 | 3.6 | 1.0 | 77 |
Red pepper, sweet | 6.0 | 4.2 | 2.3 | 1.9 | 0.0 | 1.2 | 0.0 |
Onion, sweet | 7.6 | 5.0 | 2.0 | 2.3 | 0.7 | 0.9 | 14.3 |
Sweet potato | 20.1 | 4.2 | 0.7 | 1.0 | 2.5 | 0.9 | 60.3 |
Yam | 27.9 | 0.5 | Traces | Traces | Traces | — | Traces |
Sugar cane | 13–18 | 0.2–1.0 | 0.2–1.0 | 11–16 | 1.0 | high | |
Sugar beet | 17–18 | 0.1–0.5 | 0.1–0.5 | 16–17 | 1.0 | high | |
Grains | |||||||
Corn, sweet | 19.0 | 6.2 | 1.9 | 3.4 | 0.9 | 0.61 | 15.0 |
^A The carbohydrate value is calculated in the USDA database and does not always correspond to the sum of the sugars, the starch, and the "dietary fiber".
Metabolism
Carbohydrate metabolism is the series of biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms.
The most important carbohydrate is glucose, a simple sugar (monosaccharide) that is metabolized by nearly all known organisms. Glucose and other carbohydrates are part of a wide variety of metabolic pathways across species: plants synthesize carbohydrates from carbon dioxide and water by photosynthesis storing the absorbed energy internally, often in the form of starch or lipids. Plant components are consumed by animals and fungi, and used as fuel for cellular respiration. Oxidation of one gram of carbohydrate yields approximately 16 kJ (4 kcal) of energy, while the oxidation of one gram of lipids yields about 38 kJ (9 kcal). The human body stores between 300 and 500 g of carbohydrates depending on body weight, with the skeletal muscle contributing to a large portion of the storage. Energy obtained from metabolism (e.g., oxidation of glucose) is usually stored temporarily within cells in the form of ATP. Organisms capable of anaerobic and aerobic respiration metabolize glucose and oxygen (aerobic) to release energy, with carbon dioxide and water as byproducts.
Catabolism
Catabolism is the metabolic reaction which cells undergo to break down larger molecules, extracting energy. There are two major metabolic pathways of monosaccharide catabolism: glycolysis and the citric acid cycle.
In glycolysis, oligo- and polysaccharides are cleaved first to smaller monosaccharides by enzymes called glycoside hydrolases. The monosaccharide units can then enter into monosaccharide catabolism. A 2 ATP investment is required in the early steps of glycolysis to phosphorylate Glucose to Glucose 6-Phosphate (G6P) and Fructose 6-Phosphate (F6P) to Fructose 1,6-biphosphate (FBP), thereby pushing the reaction forward irreversibly. In some cases, as with humans, not all carbohydrate types are usable as the digestive and metabolic enzymes necessary are not present.
Carbohydrate chemistry
Carbohydrate chemistry is a large and economically important branch of organic chemistry. Some of the main organic reactions that involve carbohydrates are:
- Amadori rearrangement
- Carbohydrate acetalisation
- Carbohydrate digestion
- Cyanohydrin reaction
- Koenigs–Knorr reaction
- Lobry de Bruyn–Van Ekenstein transformation
- Nef reaction
- Wohl degradation
- Tipson-Cohen reaction
- Ferrier rearrangement
- Ferrier II reaction
Chemical synthesis
Carbohydrate synthesis is a sub-field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures. This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide, known as oligosaccharides. Selective formation of glycosidic linkages and selective reactions of hydroxyl groups are very important, and the usage of protecting groups is extensive.
Common reactions for glycosidic bond formation are as follows:
- Chemical glycosylation
- Fischer glycosidation
- Koenigs-Knorr reaction
- Crich beta-mannosylation
While some common protection methods are as below:
- Carbohydrate acetalisation
- Trimethylsilyl
- Benzyl ether
- p-Methoxybenzyl ether
See also
- Bioplastic
- Carbohydrate NMR
- Gluconeogenesis – A process where glucose can be synthesized by non-carbohydrate sources.
- Glycobiology
- Glycogen
- Glycoinformatics
- Glycolipid
- Glycome
- Glycomics
- Glycosyl
- Macromolecule
- Saccharic acid
References
- Avenas P (2012). "Etymology of main polysaccharide names" (PDF). In Navard P (ed.). The European Polysaccharide Network of Excellence (EPNOE). Wien: Springer-Verlag. Archived from the original (PDF) on February 9, 2018. Retrieved January 28, 2018.
- Flitsch SL, Ulijn RV (January 2003). "Sugars tied to the spot". Nature. 421 (6920): 219–220. Bibcode:2003Natur.421..219F. doi:10.1038/421219a. PMID 12529622. S2CID 4421938.
- Carroll GT, Wang D, Turro NJ, Koberstein JT (January 2008). "Photons to illuminate the universe of sugar diversity through bioarrays". Glycoconjugate Journal. 25 (1): 5–10. doi:10.1007/s10719-007-9052-1. PMC 7088275. PMID 17610157.
- Maton A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD (1993). Human Biology and Health. Englewood Cliffs, New Jersey: Prentice Hall. pp. 52–59. ISBN 978-0-13-981176-0.
- "Fiber". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. March 2019. Retrieved January 19, 2025.
- Cummings JH (2001). The Effect of Dietary Fiber on Fecal Weight and Composition (3rd ed.). Boca Raton, Florida: CRC Press. p. 184. ISBN 978-0-8493-2387-4. Archived from the original on April 2, 2019. Retrieved April 24, 2022.
- Byrne CS, Chambers ES, Morrison DJ, Frost G (September 2015). "The role of short chain fatty acids in appetite regulation and energy homeostasis". International Journal of Obesity. 39 (9): 1331–1338. doi:10.1038/ijo.2015.84. PMC 4564526. PMID 25971927.
- Fearon WF (1949). Introduction to Biochemistry (2nd ed.). London: Heinemann. ISBN 978-1483225395. Archived from the original on July 27, 2020. Retrieved November 30, 2017.
- Denham, Tim (October 2011). "Early Agriculture and Plant Domestication in New Guinea and Island Southeast Asia". Current Anthropology. 52 (54): S161 – S512. doi:10.1086/658682. ISSN 0011-3204 – via The University of Chicago Press Journals.
- Young, F. G. (June 22, 1957). "Claude Bernard and the Discovery of Glycogen". British Medical Journal. 1 (5033): 1431–1437. doi:10.1136/bmj.1.5033.1431. ISSN 0007-1447. PMC 1973429. PMID 13436813.
- Coulter JM, Barnes CR, Cowles HC (1930). A Textbook of Botany for Colleges and Universities. BiblioBazaar. ISBN 978-1113909954. Archived from the original on April 17, 2022. Retrieved April 24, 2022.
- Burtis CA, Ashwood ER, Tietz NW (2000). Tietz fundamentals of clinical chemistry. W.B. Saunders. ISBN 9780721686349. Archived from the original on June 24, 2016. Retrieved January 8, 2016.
- Matthews CE, Van Holde KE, Ahern KG (1999). Biochemistry (3rd ed.). Benjamin Cummings. ISBN 978-0-8053-3066-3.[page needed]
- "Chapter 1 – The role of carbohydrates in nutrition". Carbohydrates in human nutrition. FAO Food and Nutrition Paper – 66. Food and Agriculture Organization of the United Nations. Archived from the original on December 22, 2015. Retrieved December 21, 2015.
- Bertozzi CR, Rabuka D (2017). "Structural Basis of Glycan Diversity". Essentials of Glycobiology (3rd ed.). Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. ISBN 978-1-621821-32-8. PMID 20301274. Archived from the original on May 19, 2020. Retrieved August 30, 2017.
- Campbell NA, Williamson B, Heyden RJ (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7. Archived from the original on November 2, 2014. Retrieved December 2, 2008.
- Pigman W, Horton D (1972). "Chapter 1: Stereochemistry of the Monosaccharides". In Pigman W, Horton D (eds.). The Carbohydrates: Chemistry and Biochemistry Vol 1A (2nd ed.). San Diego: Academic Press. pp. 1–67. ISBN 978-0323138338.
- Pigman W, Anet EF (1972). "Chapter 4: Mutarotations and Actions of Acids and Bases". In Pigman W, Horton D (eds.). The Carbohydrates: Chemistry and Biochemistry Vol 1A (2nd ed.). San Diego: Academic Press. pp. 165–194. ISBN 978-0323138338.
- "lyxoflavin". Merriam-Webster. Archived from the original on October 31, 2014. Retrieved February 26, 2014.
- "Show Foods". usda.gov. Archived from the original on October 3, 2017. Retrieved June 4, 2014.
- "Calculation of the Energy Content of Foods – Energy Conversion Factors". fao.org. Archived from the original on May 24, 2010. Retrieved August 2, 2013.
- "Carbohydrate reference list" (PDF). www.diabetes.org.uk. Archived from the original (PDF) on March 14, 2016. Retrieved October 30, 2016.
- Pichon L, Huneau JF, Fromentin G, Tomé D (May 2006). "A high-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats". The Journal of Nutrition. 136 (5): 1256–1260. doi:10.1093/jn/136.5.1256. PMID 16614413.
- Food and Nutrition Board (2002/2005). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. Washington, D.C.: The National Academies Press. Page 769 Archived September 12, 2006, at the Wayback Machine. ISBN 0-309-08537-3.
- Joint WHO/FAO expert consultation (2003). (PDF). Geneva: World Health Organization. pp. 55–56. ISBN 92-4-120916-X.
- Kelly SA, Hartley L, Loveman E, Colquitt JL, Jones HM, Al-Khudairy L, et al. (August 2017). "Whole grain cereals for the primary or secondary prevention of cardiovascular disease" (PDF). The Cochrane Database of Systematic Reviews. 8 (8): CD005051. doi:10.1002/14651858.CD005051.pub3. PMC 6484378. PMID 28836672. Archived from the original (PDF) on September 28, 2018. Retrieved September 27, 2018.
- Joint WHO/FAO expert consultation (1998), Carbohydrates in human nutrition, chapter 1 Archived January 15, 2007, at the Wayback Machine. ISBN 92-5-104114-8.
- "Carbohydrates". The Nutrition Source. Harvard School of Public Health. September 18, 2012. Archived from the original on May 7, 2013. Retrieved April 3, 2013.
- "Glycemic Index and Glycemic Load". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2025. Retrieved January 19, 2025.
- Seidelmann SB, Claggett B, Cheng S, Henglin M, Shah A, Steffen LM, et al. (September 2018). "Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis". The Lancet. Public Health (Meta-analysis). 3 (9): e419 – e428. doi:10.1016/s2468-2667(18)30135-x. PMC 6339822. PMID 30122560.
- Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L (February 2019). "Carbohydrate quality and human health: a series of systematic reviews and meta-analyses" (PDF). Lancet (Review). 393 (10170): 434–445. doi:10.1016/S0140-6736(18)31809-9. PMID 30638909. S2CID 58632705. Archived (PDF) from the original on August 11, 2021. Retrieved April 24, 2022.
- Churuangsuk C, Kherouf M, Combet E, Lean M (December 2018). "Low-carbohydrate diets for overweight and obesity: a systematic review of the systematic reviews" (PDF). Obesity Reviews (Systematic review). 19 (12): 1700–1718. doi:10.1111/obr.12744. PMID 30194696. S2CID 52174104. Archived (PDF) from the original on September 23, 2019. Retrieved April 24, 2022.
- Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL (August 2017). "Obesity Pathogenesis: An Endocrine Society Scientific Statement". Endocrine Reviews. 38 (4): 267–296. doi:10.1210/er.2017-00111. PMC 5546881. PMID 28898979.
- Butryn ML, Clark VL, Coletta MC (2012). "Behavioral approaches to the treatment of obesity". In Akabas SR, Lederman SA, Moore BJ (eds.). Textbook of Obesity. New York: John Wiley & Sons. p. 259. ISBN 978-0-470-65588-7.
Taken together, these findings indicate that calorie intake, not macronutrient composition, determines long-term weight loss maintenance.
- Lopes da Silva MV, de Cassia Goncalves Alfenas R (2011). "Effect of the glycemic index on lipid oxidation and body composition". Nutrición Hospitalaria. 26 (1): 48–55. doi:10.3305/nh.2011.26.1.5008. PMID 21519729.
- Hall KD (March 2017). "A review of the carbohydrate-insulin model of obesity". European Journal of Clinical Nutrition (Review). 71 (3): 323–326. doi:10.1038/ejcn.2016.260. PMID 28074888. S2CID 54484172.
- Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K (February 2016). "Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials". The British Journal of Nutrition. 115 (3): 466–479. doi:10.1017/S0007114515004699. PMID 26768850. S2CID 21670516.
- Gjuladin-Hellon T, Davies IG, Penson P, Amiri Baghbadorani R (March 2019). "Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: a systematic review and meta-analysis" (PDF). Nutrition Reviews (Systematic review). 77 (3): 161–180. doi:10.1093/nutrit/nuy049. PMID 30544168. S2CID 56488132. Archived (PDF) from the original on May 6, 2020. Retrieved April 24, 2022.
- Brouns F (June 2018). "Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable?". European Journal of Nutrition (Review). 57 (4): 1301–1312. doi:10.1007/s00394-018-1636-y. PMC 5959976. PMID 29541907.
- Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L (September 2017). "Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials". Diabetes Research and Clinical Practice. 131: 124–131. doi:10.1016/j.diabres.2017.07.006. PMID 28750216.
- American Diabetes Association Professional Practice Committee (January 2019). "5. Lifestyle Management: Standards of Medical Care in Diabetes-2019". Diabetes Care. 42 (Suppl 1): S46 – S60. doi:10.2337/dc19-S005. PMID 30559231. Archived from the original on December 18, 2018. Retrieved April 24, 2022.
- Seckold R, Fisher E, de Bock M, King BR, Smart CE (March 2019). "The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: a review of clinical outcomes". Diabetic Medicine (Review). 36 (3): 326–334. doi:10.1111/dme.13845. PMID 30362180. S2CID 53102654.
- "Top 5 worst celeb diets to avoid in 2018". British Dietetic Association. December 7, 2017. Archived from the original on July 31, 2020. Retrieved December 1, 2020.
The British Dietetic Association (BDA) today revealed its much-anticipated annual list of celebrity diets to avoid in 2018. The line-up this year includes Raw Vegan, Alkaline, Pioppi and Ketogenic diets as well as Katie Price's Nutritional Supplements.
- "Carbohydrates and Blood Sugar". The Nutrition Source. August 5, 2013. Archived from the original on January 30, 2017. Retrieved January 30, 2017 – via Harvard T.H. Chan School of Public Health.
- Venditti A, Frezza C, Vincenti F, Brodella A, Sciubba F, Montesano C, et al. (February 2019). "A syn-ent-labdadiene derivative with a rare spiro-β-lactone function from the male cones of Wollemia nobilis". Phytochemistry. 158: 91–95. Bibcode:2019PChem.158...91V. doi:10.1016/j.phytochem.2018.11.012. PMID 30481664. S2CID 53757166.
- Lei Y, Shi SP, Song YL, Bi D, Tu PF (May 2014). "Triterpene saponins from the roots of Ilex asprella". Chemistry & Biodiversity. 11 (5): 767–775. doi:10.1002/cbdv.201300155. PMID 24827686. S2CID 40353516.
- Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009). "Lignocellulosic Biomass Pretreatment Using AFEX". Biofuels. Methods in Molecular Biology. Vol. 581. Totowa, NJ: Humana Press. pp. 61–77. Bibcode:2009biof.book...61B. doi:10.1007/978-1-60761-214-8_5. ISBN 978-1-60761-213-1. PMID 19768616.
- "FoodData Central". fdc.nal.usda.gov.
- Maughan R (June 2013). "Surgery Oxford". www.onesearch.cuny.edu.[permanent dead link ]
- Mehta S (October 9, 2013). "Energetics of Cellular Respiration (Glucose Metabolism)". Biochemistry Notes, Notes. Archived from the original on January 25, 2018. Retrieved October 15, 2015.
Further reading
- "Compolition of foods raw, processed, prepared" (PDF). United States Department of Agriculture. September 2015. Archived (PDF) from the original on October 31, 2016. Retrieved October 30, 2016.
External links
- Carbohydrates, including interactive models and animations (Requires MDL Chime)
- IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN): Carbohydrate Nomenclature
- Carbohydrates detailed
- Carbohydrates and Glycosylation – The Virtual Library of Biochemistry, Molecular Biology and Cell Biology
- Functional Glycomics Gateway, a collaboration between the Consortium for Functional Glycomics and Nature Publishing Group
A carbohydrate ˌ k ɑːr b oʊ ˈ h aɪ d r eɪ t is a biomolecule consisting of carbon C hydrogen H and oxygen O atoms usually with a hydrogen oxygen atom ratio of 2 1 as in water and thus with the empirical formula Cm H2O n where m may or may not be different from n which does not mean the H has covalent bonds with O for example with CH2O H has a covalent bond with C but not with O However not all carbohydrates conform to this precise stoichiometric definition e g uronic acids deoxy sugars such as fucose nor are all chemicals that do conform to this definition automatically classified as carbohydrates e g formaldehyde and acetic acid Lactose is a disaccharide found in animal milk It consists of a molecule of D galactose and a molecule of D glucose bonded by beta 1 4 glycosidic linkage The term is most common in biochemistry where it is a synonym of saccharide from Ancient Greek sakxaron sakkharon sugar a group that includes sugars starch and cellulose The saccharides are divided into four chemical groups monosaccharides disaccharides oligosaccharides and polysaccharides Monosaccharides and disaccharides the smallest lower molecular weight carbohydrates are commonly referred to as sugars While the scientific nomenclature of carbohydrates is complex the names of the monosaccharides and disaccharides very often end in the suffix ose which was originally taken from the word glucose from Ancient Greek gleῦkos gleukos wine must and is used for almost all sugars e g fructose fruit sugar sucrose cane or beet sugar ribose lactose milk sugar Carbohydrates perform numerous roles in living organisms Polysaccharides serve as an energy store e g starch and glycogen and as structural components e g cellulose in plants and chitin in arthropods and fungi The 5 carbon monosaccharide ribose is an important component of coenzymes e g ATP FAD and NAD and the backbone of the genetic molecule known as RNA The related deoxyribose is a component of DNA Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system fertilization preventing pathogenesis blood clotting and development Carbohydrates are central to nutrition and are found in a wide variety of natural and processed foods Starch is a polysaccharide and is abundant in cereals wheat maize rice potatoes and processed food based on cereal flour such as bread pizza or pasta Sugars appear in human diet mainly as table sugar sucrose extracted from sugarcane or sugar beets lactose abundant in milk glucose and fructose both of which occur naturally in honey many fruits and some vegetables Table sugar milk or honey is often added to drinks and many prepared foods such as jam biscuits and cakes Cellulose a polysaccharide found in the cell walls of all plants is one of the main components of insoluble dietary fiber Although it is not digestible by humans cellulose and insoluble dietary fiber generally help maintain a healthy digestive system by facilitating bowel movements Other polysaccharides contained in dietary fiber include resistant starch and inulin which feed some bacteria in the microbiota of the large intestine and are metabolized by these bacteria to yield short chain fatty acids TerminologyIn scientific literature the term carbohydrate has many synonyms like sugar in the broad sense saccharide ose glucide hydrate of carbon or polyhydroxy compounds with aldehyde or ketone Some of these terms especially carbohydrate and sugar are also used with other meanings In food science and in many informal contexts the term carbohydrate often means any food that is particularly rich in the complex carbohydrate starch such as cereals bread and pasta or simple carbohydrates such as sugar found in candy jams and desserts This informality is sometimes confusing since it confounds chemical structure and digestibility in humans The term carbohydrate or carbohydrate by difference refers also to dietary fiber which is a carbohydrate but unlike sugars and starches fibers are not hydrolyzed by human digestive enzymes Fiber generally contributes little food energy in humans but is often included in the calculation of total food energy The fermentation of soluble fibers by gut microflora can yield short chain fatty acids and soluble fiber is estimated to provide about 2 kcal g HistoryThis section needs expansion You can help by adding to it January 2022 The history of the discovery regarding carbohydrates dates back around 10 000 years ago in Papua New Guinea during the cultivation of sugarcane during the Neolithic agricultural revolution The term carbohydrate was first proposed by German chemist Carl Schmidt chemist in 1844 In 1856 glycogen a form of carbohydrate storage in animal livers was discovered by French physiologist Claude Bernard StructureFormerly the name carbohydrate was used in chemistry for any compound with the formula Cm H2O n Following this definition some chemists considered formaldehyde CH2O to be the simplest carbohydrate while others claimed that title for glycolaldehyde Today the term is generally understood in the biochemistry sense which excludes compounds with only one or two carbons and includes many biological carbohydrates which deviate from this formula For example while the above representative formulas would seem to capture the commonly known carbohydrates ubiquitous and abundant carbohydrates often deviate from this For example carbohydrates often display chemical groups such as N acetyl e g chitin sulfate e g glycosaminoglycans carboxylic acid and deoxy modifications e g fucose and sialic acid Natural saccharides are generally built of simple carbohydrates called monosaccharides with general formula CH2O n where n is three or more A typical monosaccharide has the structure H CHOH x C O CHOH y H that is an aldehyde or ketone with many hydroxyl groups added usually one on each carbon atom that is not part of the aldehyde or ketone functional group Examples of monosaccharides are glucose fructose and glyceraldehydes However some biological substances commonly called monosaccharides do not conform to this formula e g uronic acids and deoxy sugars such as fucose and there are many chemicals that do conform to this formula but are not considered to be monosaccharides e g formaldehyde CH2O and inositol CH2O 6 The open chain form of a monosaccharide often coexists with a closed ring form where the aldehyde ketone carbonyl group carbon C O and hydroxyl group OH react forming a hemiacetal with a new C O C bridge Monosaccharides can be linked together into what are called polysaccharides or oligosaccharides in a large variety of ways Many carbohydrates contain one or more modified monosaccharide units that have had one or more groups replaced or removed For example deoxyribose a component of DNA is a modified version of ribose chitin is composed of repeating units of N acetyl glucosamine a nitrogen containing form of glucose DivisionCarbohydrates are polyhydroxy aldehydes ketones alcohols acids their simple derivatives and their polymers having linkages of the acetal type They may be classified according to their degree of polymerization and may be divided initially into three principal groups namely sugars oligosaccharides and polysaccharides The major dietary carbohydrates Class degree of polymerization Subgroup ComponentsSugars 1 2 Monosaccharides Glucose galactose fructose xyloseDisaccharides Sucrose lactose maltose isomaltulose trehalosePolyols Sorbitol mannitolOligosaccharides 3 9 Malto oligosaccharides MaltodextrinsOther oligosaccharides Raffinose stachyose fructo oligosaccharidesPolysaccharides gt 9 Starch Amylose amylopectin modified starchesNon starch polysaccharides Glycogen Cellulose Hemicellulose Pectins HydrocolloidsMonosaccharidesD glucose is an aldohexose with the formula C H2O 6 The red atoms highlight the aldehyde group and the blue atoms highlight the asymmetric center furthest from the aldehyde because this OH is on the right of the Fischer projection this is a D sugar Monosaccharides are the simplest carbohydrates in that they cannot be hydrolyzed to smaller carbohydrates They are aldehydes or ketones with two or more hydroxyl groups The general chemical formula of an unmodified monosaccharide is C H2O n literally a carbon hydrate Monosaccharides are important fuel molecules as well as building blocks for nucleic acids The smallest monosaccharides for which n 3 are dihydroxyacetone and D and L glyceraldehydes Classification of monosaccharides The a and b anomers of glucose Note the position of the hydroxyl group red or green on the anomeric carbon relative to the CH2OH group bound to carbon 5 they either have identical absolute configurations R R or S S a or opposite absolute configurations R S or S R b Monosaccharides are classified according to three different characteristics the placement of its carbonyl group the number of carbon atoms it contains and its chiral handedness If the carbonyl group is an aldehyde the monosaccharide is an aldose if the carbonyl group is a ketone the monosaccharide is a ketose Monosaccharides with three carbon atoms are called trioses those with four are called tetroses five are called pentoses six are hexoses and so on These two systems of classification are often combined For example glucose is an aldohexose a six carbon aldehyde ribose is an aldopentose a five carbon aldehyde and fructose is a ketohexose a six carbon ketone Each carbon atom bearing a hydroxyl group OH with the exception of the first and last carbons are asymmetric making them stereo centers with two possible configurations each R or S Because of this asymmetry a number of isomers may exist for any given monosaccharide formula Using Le Bel van t Hoff rule the aldohexose D glucose for example has the formula C H2O 6 of which four of its six carbons atoms are stereogenic making D glucose one of 24 16 possible stereoisomers In the case of glyceraldehydes an aldotriose there is one pair of possible stereoisomers which are enantiomers and epimers 1 3 dihydroxyacetone the ketose corresponding to the aldose glyceraldehydes is a symmetric molecule with no stereo centers The assignment of D or L is made according to the orientation of the asymmetric carbon furthest from the carbonyl group in a standard Fischer projection if the hydroxyl group is on the right the molecule is a D sugar otherwise it is an L sugar The D and L prefixes should not be confused with d or l which indicate the direction that the sugar rotates plane polarized light This usage of d and l is no longer followed in carbohydrate chemistry Ring straight chain isomerism Glucose can exist in both a straight chain and ring form The aldehyde or ketone group of a straight chain monosaccharide will react reversibly with a hydroxyl group on a different carbon atom to form a hemiacetal or hemiketal forming a heterocyclic ring with an oxygen bridge between two carbon atoms Rings with five and six atoms are called furanose and pyranose forms respectively and exist in equilibrium with the straight chain form During the conversion from straight chain form to the cyclic form the carbon atom containing the carbonyl oxygen called the anomeric carbon becomes a stereogenic center with two possible configurations The oxygen atom may take a position either above or below the plane of the ring The resulting possible pair of stereoisomers is called anomers In the a anomer the OH substituent on the anomeric carbon rests on the opposite side trans of the ring from the CH2OH side branch The alternative form in which the CH2OH substituent and the anomeric hydroxyl are on the same side cis of the plane of the ring is called the b anomer Use in living organisms Monosaccharides are the major fuel source for metabolism and glucose is an energy rich molecule utilized to generate ATP in almost all living organisms Glucose is a high energy substrate produced in plants through photosynthesis by combining energy poor water and carbon dioxide in an endothermic reaction fueled by solar energy When monosaccharides are not immediately needed they are often converted to more space efficient i e less water soluble forms often polysaccharides In animals glucose circulating the blood is a major metabolic substrate and is oxidized in the mitochondria to produce ATP for performing useful cellular work In humans and other animals serum glucose levels must be regulated carefully to maintain glucose within acceptable limits and prevent the deleterious effects of hypo or hyperglycemia Hormones such as insulin and glucagon serve to keep glucose levels in balance insulin stimulates glucose uptake into the muscle and fat cells when glucose levels are high whereas glucagon helps to raise glucose levels if they dip too low by stimulating hepatic glucose synthesis In many animals including humans this storage form is glycogen especially in liver and muscle cells In plants starch is used for the same purpose The most abundant carbohydrate cellulose is a structural component of the cell wall of plants and many forms of algae Ribose is a component of RNA Deoxyribose is a component of DNA Lyxose is a component of lyxoflavin found in the human heart Ribulose and xylulose occur in the pentose phosphate pathway Galactose a component of milk sugar lactose is found in galactolipids in plant cell membranes and in glycoproteins in many tissues Mannose occurs in human metabolism especially in the glycosylation of certain proteins Fructose or fruit sugar is found in many plants and humans it is metabolized in the liver absorbed directly into the intestines during digestion and found in semen Trehalose a major sugar of insects is rapidly hydrolyzed into two glucose molecules to support continuous flight DisaccharidesSucrose also known as table sugar is a common disaccharide It is composed of two monosaccharides D glucose left and D fructose right Two joined monosaccharides are called a disaccharide the simplest kind of polysaccharide Examples include sucrose and lactose They are composed of two monosaccharide units bound together by a covalent bond known as a glycosidic linkage formed via a dehydration reaction resulting in the loss of a hydrogen atom from one monosaccharide and a hydroxyl group from the other The formula of unmodified disaccharides is C12H22O11 Although there are numerous kinds of disaccharides a handful of disaccharides are particularly notable Sucrose pictured to the right is the most abundant disaccharide and the main form in which carbohydrates are transported in plants It is composed of one D glucose molecule and one D fructose molecule The systematic name for sucrose O a D glucopyranosyl 1 2 D fructofuranoside indicates four things Its monosaccharides glucose and fructose Their ring types glucose is a pyranose and fructose is a furanose How they are linked together the oxygen on carbon number 1 C1 of a D glucose is linked to the C2 of D fructose The oside suffix indicates that the anomeric carbon of both monosaccharides participates in the glycosidic bond Lactose a disaccharide composed of one D galactose molecule and one D glucose molecule occurs naturally in mammalian milk The systematic name for lactose is O b D galactopyranosyl 1 4 D glucopyranose Other notable disaccharides include maltose two D glucoses linked a 1 4 and cellobiose two D glucoses linked b 1 4 Disaccharides can be classified into two types reducing and non reducing disaccharides If the functional group is present in bonding with another sugar unit it is called a reducing disaccharide or biose Oligosaccharides and polysaccharidesOligosaccharides Oligosaccharides are saccharide polymers composed of three to ten units of monosaccharides connected via glycosidic linkages similar to disaccharides They are usually linked to lipids or amino acids glycosic linkage with oxygen or nitrogen to form glygolipids and glycoproteins though some like the raffinose series and the fructooligosaccharides do not They have roles in cell recognition and cell adhesion The structure of fructooligosaccharidePolysaccharidesNutritionGrain products rich sources of carbohydrates Carbohydrate consumed in food yields 3 87 kilocalories of energy per gram for simple sugars and 3 57 to 4 12 kilocalories per gram for complex carbohydrate in most other foods Relatively high levels of carbohydrate are associated with processed foods or refined foods made from plants including sweets cookies and candy table sugar honey soft drinks breads and crackers jams and fruit products pastas and breakfast cereals Refined carbohydrates from processed foods such as white bread or rice soft drinks and desserts are readily digestible and many are known to have a high glycemic index which reflects a rapid assimilation of glucose By contrast the digestion of whole unprocessed fiber rich foods such as beans peas and whole grains produces a slower and steadier release of glucose and energy into the body Animal based foods generally have the lowest carbohydrate levels although milk does contain a high proportion of lactose Organisms typically cannot metabolize all types of carbohydrate to yield energy Glucose is a nearly universal and accessible source of energy Many organisms also have the ability to metabolize other monosaccharides and disaccharides but glucose is often metabolized first In Escherichia coli for example the lac operon will express enzymes for the digestion of lactose when it is present but if both lactose and glucose are present the lac operon is repressed resulting in the glucose being used first see Diauxie Polysaccharides are also common sources of energy Many organisms can easily break down starches into glucose most organisms however cannot metabolize cellulose or other polysaccharides such as chitin and arabinoxylans These carbohydrate types can be metabolized by some bacteria and protists Ruminants and termites for example use microorganisms to process cellulose fermenting it to caloric short chain fatty acids Even though humans lack the enzymes to digest fiber dietary fiber represents an important dietary element for humans Fibers promote healthy digestion help regulate postprandial glucose and insulin levels reduce cholesterol levels and promote satiety The Institute of Medicine recommends that American and Canadian adults get between 45 and 65 of dietary energy from whole grain carbohydrates The Food and Agriculture Organization and World Health Organization jointly recommend that national dietary guidelines set a goal of 55 75 of total energy from carbohydrates but only 10 directly from sugars their term for simple carbohydrates A 2017 Cochrane Systematic Review concluded that there was insufficient evidence to support the claim that whole grain diets can affect cardiovascular disease Classification The term complex carbohydrate was first used in the U S Senate Select Committee on Nutrition and Human Needs publication Dietary Goals for the United States 1977 where it was intended to distinguish sugars from other carbohydrates which were perceived to be nutritionally superior However the report put fruit vegetables and whole grains in the complex carbohydrate column despite the fact that these may contain sugars as well as polysaccharides The standard usage however is to classify carbohydrates chemically simple if they are sugars monosaccharides and disaccharides and complex if they are polysaccharides or oligosaccharides Carbohydrates are sometimes divided into available carbohydrates which are absorbed in the small intestine and unavailable carbohydrates which pass to the large intestine where they are subject to fermentation by the gastrointestinal microbiota Glycemic index The glycemic index GI and glycemic load concepts characterize the potential for carbohydrates in food to raise blood glucose compared to a reference food generally pure glucose Expressed numerically as GI carbohydrate containing foods can be grouped as high GI score more than 70 moderate GI 56 69 or low GI less than 55 relative to pure glucose GI 100 Consumption of carbohydrate rich high GI foods causes an abrupt increase in blood glucose concentration that declines rapidly following the meal whereas low GI foods with lower carbohydrate content produces a lower blood glucose concentration that returns gradually after the meal Glycemic load is a measure relating the quality of carbohydrates in a food low vs high carbohydrate content the GI by the amount of carbohydrates in a single serving of that food Health effects of dietary carbohydrate restriction Low carbohydrate diets may miss the health advantages such as increased intake of dietary fiber and phytochemicals afforded by high quality plant foods such as legumes and pulses whole grains fruits and vegetables A meta analysis of moderate quality included as adverse effects of the diet halitosis headache and constipation better source needed Carbohydrate restricted diets can be as effective as low fat diets in helping achieve weight loss over the short term when overall calorie intake is reduced An Endocrine Society scientific statement said that when calorie intake is held constant body fat accumulation does not appear to be affected by even very pronounced changes in the amount of fat vs carbohydrate in the diet In the long term low carbohydrate diets do not appear to confer a metabolic advantage and effective weight loss or maintenance depends on the level of calorie restriction not the ratio of macronutrients in a diet The reasoning of diet advocates that carbohydrates cause undue fat accumulation by increasing blood insulin levels but a more balanced diet that restricts refined carbohydrates can also reduce serum glucose and insulin levels and may also suppress lipogenesis and promote fat oxidation However as far as energy expenditure itself is concerned the claim that low carbohydrate diets have a metabolic advantage is not supported by clinical evidence Further it is not clear how low carbohydrate dieting affects cardiovascular health although two reviews showed that carbohydrate restriction may improve lipid markers of cardiovascular disease risk Carbohydrate restricted diets are no more effective than a conventional healthy diet in preventing the onset of type 2 diabetes but for people with type 2 diabetes they are a viable option for losing weight or helping with glycemic control There is limited evidence to support routine use of low carbohydrate dieting in managing type 1 diabetes The American Diabetes Association recommends that people with diabetes should adopt a generally healthy diet rather than a diet focused on carbohydrate or other macronutrients An extreme form of low carbohydrate diet the ketogenic diet is established as a medical diet for treating epilepsy Through celebrity endorsement during the early 21st century it became a fad diet as a means of weight loss but with risks of undesirable side effects such as low energy levels and increased hunger insomnia nausea and gastrointestinal discomfort scientific citation needed The British Dietetic Association named it one of the top 5 worst celeb diets to avoid in 2018 SourcesGlucose tablets Most dietary carbohydrates contain glucose either as their only building block as in the polysaccharides starch and glycogen or together with another monosaccharide as in the hetero polysaccharides sucrose and lactose Unbound glucose is one of the main ingredients of honey Glucose is extremely abundant and has been isolated from a variety of natural sources across the world including male cones of the coniferous tree Wollemia nobilis in Rome the roots of Ilex asprella plants in China and straws from rice in California Sugar content of selected common plant foods in grams per 100 g Food item Carbohydrate total A including dietary fiber Total sugars Free fructose Free glucose Sucrose Ratio of fructose glucose Sucrose as proportion of total sugars FruitsApple 13 8 10 4 5 9 2 4 2 1 2 0 19 9Apricot 11 1 9 2 0 9 2 4 5 9 0 7 63 5Banana 22 8 12 2 4 9 5 0 2 4 1 0 20 0Fig dried 63 9 47 9 22 9 24 8 0 9 0 93 0 15Grapes 18 1 15 5 8 1 7 2 0 2 1 1 1Navel orange 12 5 8 5 2 25 2 0 4 3 1 1 50 4Peach 9 5 8 4 1 5 2 0 4 8 0 9 56 7Pear 15 5 9 8 6 2 2 8 0 8 2 1 8 0Pineapple 13 1 9 9 2 1 1 7 6 0 1 1 60 8Plum 11 4 9 9 3 1 5 1 1 6 0 66 16 2VegetablesBeet red 9 6 6 8 0 1 0 1 6 5 1 0 96 2Carrot 9 6 4 7 0 6 0 6 3 6 1 0 77Red pepper sweet 6 0 4 2 2 3 1 9 0 0 1 2 0 0Onion sweet 7 6 5 0 2 0 2 3 0 7 0 9 14 3Sweet potato 20 1 4 2 0 7 1 0 2 5 0 9 60 3Yam 27 9 0 5 Traces Traces Traces TracesSugar cane 13 18 0 2 1 0 0 2 1 0 11 16 1 0 highSugar beet 17 18 0 1 0 5 0 1 0 5 16 17 1 0 highGrainsCorn sweet 19 0 6 2 1 9 3 4 0 9 0 61 15 0 A The carbohydrate value is calculated in the USDA database and does not always correspond to the sum of the sugars the starch and the dietary fiber MetabolismCarbohydrate metabolism is the series of biochemical processes responsible for the formation breakdown and interconversion of carbohydrates in living organisms The most important carbohydrate is glucose a simple sugar monosaccharide that is metabolized by nearly all known organisms Glucose and other carbohydrates are part of a wide variety of metabolic pathways across species plants synthesize carbohydrates from carbon dioxide and water by photosynthesis storing the absorbed energy internally often in the form of starch or lipids Plant components are consumed by animals and fungi and used as fuel for cellular respiration Oxidation of one gram of carbohydrate yields approximately 16 kJ 4 kcal of energy while the oxidation of one gram of lipids yields about 38 kJ 9 kcal The human body stores between 300 and 500 g of carbohydrates depending on body weight with the skeletal muscle contributing to a large portion of the storage Energy obtained from metabolism e g oxidation of glucose is usually stored temporarily within cells in the form of ATP Organisms capable of anaerobic and aerobic respiration metabolize glucose and oxygen aerobic to release energy with carbon dioxide and water as byproducts Catabolism Catabolism is the metabolic reaction which cells undergo to break down larger molecules extracting energy There are two major metabolic pathways of monosaccharide catabolism glycolysis and the citric acid cycle In glycolysis oligo and polysaccharides are cleaved first to smaller monosaccharides by enzymes called glycoside hydrolases The monosaccharide units can then enter into monosaccharide catabolism A 2 ATP investment is required in the early steps of glycolysis to phosphorylate Glucose to Glucose 6 Phosphate G6P and Fructose 6 Phosphate F6P to Fructose 1 6 biphosphate FBP thereby pushing the reaction forward irreversibly In some cases as with humans not all carbohydrate types are usable as the digestive and metabolic enzymes necessary are not present Carbohydrate chemistryCarbohydrate chemistry is a large and economically important branch of organic chemistry Some of the main organic reactions that involve carbohydrates are Amadori rearrangement Carbohydrate acetalisation Carbohydrate digestion Cyanohydrin reaction Koenigs Knorr reaction Lobry de Bruyn Van Ekenstein transformation Nef reaction Wohl degradation Tipson Cohen reaction Ferrier rearrangement Ferrier II reactionChemical synthesisCarbohydrate synthesis is a sub field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide known as oligosaccharides Selective formation of glycosidic linkages and selective reactions of hydroxyl groups are very important and the usage of protecting groups is extensive Common reactions for glycosidic bond formation are as follows Chemical glycosylation Fischer glycosidation Koenigs Knorr reaction Crich beta mannosylation While some common protection methods are as below Carbohydrate acetalisation Trimethylsilyl Benzyl ether p Methoxybenzyl etherSee alsoBioplastic Carbohydrate NMR Gluconeogenesis A process where glucose can be synthesized by non carbohydrate sources Glycobiology Glycogen Glycoinformatics Glycolipid Glycome Glycomics Glycosyl Macromolecule Saccharic acidReferencesAvenas P 2012 Etymology of main polysaccharide names PDF In Navard P ed The European Polysaccharide Network of Excellence EPNOE Wien Springer Verlag Archived from the original PDF on February 9 2018 Retrieved January 28 2018 Flitsch SL Ulijn RV January 2003 Sugars tied to the spot Nature 421 6920 219 220 Bibcode 2003Natur 421 219F doi 10 1038 421219a PMID 12529622 S2CID 4421938 Carroll GT Wang D Turro NJ Koberstein JT January 2008 Photons to illuminate the universe of sugar diversity through bioarrays Glycoconjugate Journal 25 1 5 10 doi 10 1007 s10719 007 9052 1 PMC 7088275 PMID 17610157 Maton A Hopkins J McLaughlin CW Johnson S Warner MQ LaHart D Wright JD 1993 Human Biology and Health Englewood Cliffs New Jersey Prentice Hall pp 52 59 ISBN 978 0 13 981176 0 Fiber Micronutrient Information Center Linus Pauling Institute Oregon State University March 2019 Retrieved January 19 2025 Cummings JH 2001 The Effect of Dietary Fiber on Fecal Weight and Composition 3rd ed Boca Raton Florida CRC Press p 184 ISBN 978 0 8493 2387 4 Archived from the original on April 2 2019 Retrieved April 24 2022 Byrne CS Chambers ES Morrison DJ Frost G September 2015 The role of short chain fatty acids in appetite regulation and energy homeostasis International Journal of Obesity 39 9 1331 1338 doi 10 1038 ijo 2015 84 PMC 4564526 PMID 25971927 Fearon WF 1949 Introduction to Biochemistry 2nd ed London Heinemann ISBN 978 1483225395 Archived from the original on July 27 2020 Retrieved November 30 2017 Denham Tim October 2011 Early Agriculture and Plant Domestication in New Guinea and Island Southeast Asia Current Anthropology 52 54 S161 S512 doi 10 1086 658682 ISSN 0011 3204 via The University of Chicago Press Journals Young F G June 22 1957 Claude Bernard and the Discovery of Glycogen British Medical Journal 1 5033 1431 1437 doi 10 1136 bmj 1 5033 1431 ISSN 0007 1447 PMC 1973429 PMID 13436813 Coulter JM Barnes CR Cowles HC 1930 A Textbook of Botany for Colleges and Universities BiblioBazaar ISBN 978 1113909954 Archived from the original on April 17 2022 Retrieved April 24 2022 Burtis CA Ashwood ER Tietz NW 2000 Tietz fundamentals of clinical chemistry W B Saunders ISBN 9780721686349 Archived from the original on June 24 2016 Retrieved January 8 2016 Matthews CE Van Holde KE Ahern KG 1999 Biochemistry 3rd ed Benjamin Cummings ISBN 978 0 8053 3066 3 page needed Chapter 1 The role of carbohydrates in nutrition Carbohydrates in human nutrition FAO Food and Nutrition Paper 66 Food and Agriculture Organization of the United Nations Archived from the original on December 22 2015 Retrieved December 21 2015 Bertozzi CR Rabuka D 2017 Structural Basis of Glycan Diversity Essentials of Glycobiology 3rd ed Cold Spring Harbor NY Cold Spring Harbor Laboratory Press ISBN 978 1 621821 32 8 PMID 20301274 Archived from the original on May 19 2020 Retrieved August 30 2017 Campbell NA Williamson B Heyden RJ 2006 Biology Exploring Life Boston Massachusetts Pearson Prentice Hall ISBN 978 0 13 250882 7 Archived from the original on November 2 2014 Retrieved December 2 2008 Pigman W Horton D 1972 Chapter 1 Stereochemistry of the Monosaccharides In Pigman W Horton D eds The Carbohydrates Chemistry and Biochemistry Vol 1A 2nd ed San Diego Academic Press pp 1 67 ISBN 978 0323138338 Pigman W Anet EF 1972 Chapter 4 Mutarotations and Actions of Acids and Bases In Pigman W Horton D eds The Carbohydrates Chemistry and Biochemistry Vol 1A 2nd ed San Diego Academic Press pp 165 194 ISBN 978 0323138338 lyxoflavin Merriam Webster Archived from the original on October 31 2014 Retrieved February 26 2014 Show Foods usda gov Archived from the original on October 3 2017 Retrieved June 4 2014 Calculation of the Energy Content of Foods Energy Conversion Factors fao org Archived from the original on May 24 2010 Retrieved August 2 2013 Carbohydrate reference list PDF www diabetes org uk Archived from the original PDF on March 14 2016 Retrieved October 30 2016 Pichon L Huneau JF Fromentin G Tome D May 2006 A high protein high fat carbohydrate free diet reduces energy intake hepatic lipogenesis and adiposity in rats The Journal of Nutrition 136 5 1256 1260 doi 10 1093 jn 136 5 1256 PMID 16614413 Food and Nutrition Board 2002 2005 Dietary Reference Intakes for Energy Carbohydrate Fiber Fat Fatty Acids Cholesterol Protein and Amino Acids Washington D C The National Academies Press Page 769 Archived September 12 2006 at the Wayback Machine ISBN 0 309 08537 3 Joint WHO FAO expert consultation 2003 PDF Geneva World Health Organization pp 55 56 ISBN 92 4 120916 X Kelly SA Hartley L Loveman E Colquitt JL Jones HM Al Khudairy L et al August 2017 Whole grain cereals for the primary or secondary prevention of cardiovascular disease PDF The Cochrane Database of Systematic Reviews 8 8 CD005051 doi 10 1002 14651858 CD005051 pub3 PMC 6484378 PMID 28836672 Archived from the original PDF on September 28 2018 Retrieved September 27 2018 Joint WHO FAO expert consultation 1998 Carbohydrates in human nutrition chapter 1 Archived January 15 2007 at the Wayback Machine ISBN 92 5 104114 8 Carbohydrates The Nutrition Source Harvard School of Public Health September 18 2012 Archived from the original on May 7 2013 Retrieved April 3 2013 Glycemic Index and Glycemic Load Micronutrient Information Center Linus Pauling Institute Oregon State University 2025 Retrieved January 19 2025 Seidelmann SB Claggett B Cheng S Henglin M Shah A Steffen LM et al September 2018 Dietary carbohydrate intake and mortality a prospective cohort study and meta analysis The Lancet Public Health Meta analysis 3 9 e419 e428 doi 10 1016 s2468 2667 18 30135 x PMC 6339822 PMID 30122560 Reynolds A Mann J Cummings J Winter N Mete E Te Morenga L February 2019 Carbohydrate quality and human health a series of systematic reviews and meta analyses PDF Lancet Review 393 10170 434 445 doi 10 1016 S0140 6736 18 31809 9 PMID 30638909 S2CID 58632705 Archived PDF from the original on August 11 2021 Retrieved April 24 2022 Churuangsuk C Kherouf M Combet E Lean M December 2018 Low carbohydrate diets for overweight and obesity a systematic review of the systematic reviews PDF Obesity Reviews Systematic review 19 12 1700 1718 doi 10 1111 obr 12744 PMID 30194696 S2CID 52174104 Archived PDF from the original on September 23 2019 Retrieved April 24 2022 Schwartz MW Seeley RJ Zeltser LM Drewnowski A Ravussin E Redman LM Leibel RL August 2017 Obesity Pathogenesis An Endocrine Society Scientific Statement Endocrine Reviews 38 4 267 296 doi 10 1210 er 2017 00111 PMC 5546881 PMID 28898979 Butryn ML Clark VL Coletta MC 2012 Behavioral approaches to the treatment of obesity In Akabas SR Lederman SA Moore BJ eds Textbook of Obesity New York John Wiley amp Sons p 259 ISBN 978 0 470 65588 7 Taken together these findings indicate that calorie intake not macronutrient composition determines long term weight loss maintenance Lopes da Silva MV de Cassia Goncalves Alfenas R 2011 Effect of the glycemic index on lipid oxidation and body composition Nutricion Hospitalaria 26 1 48 55 doi 10 3305 nh 2011 26 1 5008 PMID 21519729 Hall KD March 2017 A review of the carbohydrate insulin model of obesity European Journal of Clinical Nutrition Review 71 3 323 326 doi 10 1038 ejcn 2016 260 PMID 28074888 S2CID 54484172 Mansoor N Vinknes KJ Veierod MB Retterstol K February 2016 Effects of low carbohydrate diets v low fat diets on body weight and cardiovascular risk factors a meta analysis of randomised controlled trials The British Journal of Nutrition 115 3 466 479 doi 10 1017 S0007114515004699 PMID 26768850 S2CID 21670516 Gjuladin Hellon T Davies IG Penson P Amiri Baghbadorani R March 2019 Effects of carbohydrate restricted diets on low density lipoprotein cholesterol levels in overweight and obese adults a systematic review and meta analysis PDF Nutrition Reviews Systematic review 77 3 161 180 doi 10 1093 nutrit nuy049 PMID 30544168 S2CID 56488132 Archived PDF from the original on May 6 2020 Retrieved April 24 2022 Brouns F June 2018 Overweight and diabetes prevention is a low carbohydrate high fat diet recommendable European Journal of Nutrition Review 57 4 1301 1312 doi 10 1007 s00394 018 1636 y PMC 5959976 PMID 29541907 Meng Y Bai H Wang S Li Z Wang Q Chen L September 2017 Efficacy of low carbohydrate diet for type 2 diabetes mellitus management A systematic review and meta analysis of randomized controlled trials Diabetes Research and Clinical Practice 131 124 131 doi 10 1016 j diabres 2017 07 006 PMID 28750216 American Diabetes Association Professional Practice Committee January 2019 5 Lifestyle Management Standards of Medical Care in Diabetes 2019 Diabetes Care 42 Suppl 1 S46 S60 doi 10 2337 dc19 S005 PMID 30559231 Archived from the original on December 18 2018 Retrieved April 24 2022 Seckold R Fisher E de Bock M King BR Smart CE March 2019 The ups and downs of low carbohydrate diets in the management of Type 1 diabetes a review of clinical outcomes Diabetic Medicine Review 36 3 326 334 doi 10 1111 dme 13845 PMID 30362180 S2CID 53102654 Top 5 worst celeb diets to avoid in 2018 British Dietetic Association December 7 2017 Archived from the original on July 31 2020 Retrieved December 1 2020 The British Dietetic Association BDA today revealed its much anticipated annual list of celebrity diets to avoid in 2018 The line up this year includes Raw Vegan Alkaline Pioppi and Ketogenic diets as well as Katie Price s Nutritional Supplements Carbohydrates and Blood Sugar The Nutrition Source August 5 2013 Archived from the original on January 30 2017 Retrieved January 30 2017 via Harvard T H Chan School of Public Health Venditti A Frezza C Vincenti F Brodella A Sciubba F Montesano C et al February 2019 A syn ent labdadiene derivative with a rare spiro b lactone function from the male cones of Wollemia nobilis Phytochemistry 158 91 95 Bibcode 2019PChem 158 91V doi 10 1016 j phytochem 2018 11 012 PMID 30481664 S2CID 53757166 Lei Y Shi SP Song YL Bi D Tu PF May 2014 Triterpene saponins from the roots of Ilex asprella Chemistry amp Biodiversity 11 5 767 775 doi 10 1002 cbdv 201300155 PMID 24827686 S2CID 40353516 Balan V Bals B Chundawat SP Marshall D Dale BE 2009 Lignocellulosic Biomass Pretreatment Using AFEX Biofuels Methods in Molecular Biology Vol 581 Totowa NJ Humana Press pp 61 77 Bibcode 2009biof book 61B doi 10 1007 978 1 60761 214 8 5 ISBN 978 1 60761 213 1 PMID 19768616 FoodData Central fdc nal usda gov Maughan R June 2013 Surgery Oxford www onesearch cuny edu permanent dead link Mehta S October 9 2013 Energetics of Cellular Respiration Glucose Metabolism Biochemistry Notes Notes Archived from the original on January 25 2018 Retrieved October 15 2015 Further reading Compolition of foods raw processed prepared PDF United States Department of Agriculture September 2015 Archived PDF from the original on October 31 2016 Retrieved October 30 2016 External linksWikimedia Commons has media related to Carbohydrates Wikiquote has quotations related to Carbohydrate Carbohydrates including interactive models and animations Requires MDL Chime IUPAC IUBMB Joint Commission on Biochemical Nomenclature JCBN Carbohydrate Nomenclature Carbohydrates detailed Carbohydrates and Glycosylation The Virtual Library of Biochemistry Molecular Biology and Cell Biology Functional Glycomics Gateway a collaboration between the Consortium for Functional Glycomics and Nature Publishing Group