![Physiological ecology](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi8yLzJkL0lzc29yaWFfbGF0aG9uaWEuanBnLzE2MDBweC1Jc3NvcmlhX2xhdGhvbmlhLmpwZw==.jpg )
Ecophysiology (from Greek οἶκος, oikos, "house(hold)"; φύσις, physis, "nature, origin"; and -λογία, -logia), environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.
Plants
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be understood on this basis.[citation needed]
In many cases, animals are able to escape unfavourable and changing environmental factors such as heat, cold, drought or floods, while plants are unable to move away and therefore must endure the adverse conditions or perish (animals go places, plants grow places). Plants are therefore phenotypically plastic and have an impressive array of genes that aid in acclimating to changing conditions. It is hypothesized that this large number of genes can be partly explained by plant species' need to live in a wider range of conditions.
Light
Light is the food of plants, i.e. the form of energy that plants use to build themselves and reproduce. The organs harvesting light in plants are leaves and the process through which light is converted into biomass is photosynthesis. The response of photosynthesis to light is called light response curve of net photosynthesis (PI curve). The shape is typically described by a non-rectangular hyperbola. Three quantities of the light response curve are particularly useful in characterising a plant's response to light intensities. The inclined asymptote has a positive slope representing the efficiency of light use, and is called quantum efficiency; the x-intercept is the light intensity at which biochemical assimilation (gross assimilation) balances leaf respiration so that the net CO2 exchange of the leaf is zero, called light compensation point; and a horizontal asymptote representing the maximum assimilation rate. Sometimes after reaching the maximum assimilation declines for processes collectively known as photoinhibition.
As with most abiotic factors, light intensity (irradiance) can be both suboptimal and excessive. Suboptimal light (shade) typically occurs at the base of a plant canopy or in an understory environment. Shade tolerant plants have a range of adaptations to help them survive the altered quantity and quality of light typical of shade environments.
Excess light occurs at the top of canopies and on open ground when cloud cover is low and the sun's zenith angle is low, typically this occurs in the tropics and at high altitudes. Excess light incident on a leaf can result in photoinhibition and photodestruction. Plants adapted to high light environments have a range of adaptations to avoid or dissipate the excess light energy, as well as mechanisms that reduce the amount of injury caused.
Light intensity is also an important component in determining the temperature of plant organs (energy budget).
Temperature
In response to extremes of temperature, plants can produce various proteins. These protect them from the damaging effects of ice formation and falling rates of enzyme catalysis at low temperatures, and from enzyme denaturation and increased photorespiration at high temperatures. As temperatures fall, production of antifreeze proteins and dehydrins increases. As temperatures rise, production of heat shock proteins increases. Metabolic imbalances associated with temperature extremes result in the build-up of reactive oxygen species, which can be countered by antioxidant systems. Cell membranes are also affected by changes in temperature and can cause the membrane to lose its fluid properties and become a gel in cold conditions or to become leaky in hot conditions. This can affect the movement of compounds across the membrane. To prevent these changes, plants can change the composition of their membranes. In cold conditions, more unsaturated fatty acids are placed in the membrane and in hot conditions, more saturated fatty acids are inserted.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelUyTDB4bFlXWmZkR1Z0Y0dWeVlYUjFjbVV0WDJsdVpuSmhjbVZrWDJsdFlXZGxYMjltWDNSdmJXRjBiMTlzWldGMlpYTXVhbkJuTHpJeU1IQjRMVXhsWVdaZmRHVnRjR1Z5WVhSMWNtVXRYMmx1Wm5KaGNtVmtYMmx0WVdkbFgyOW1YM1J2YldGMGIxOXNaV0YyWlhNdWFuQm4uanBn.jpg)
Plants can avoid overheating by minimising the amount of sunlight absorbed and by enhancing the cooling effects of wind and transpiration. Plants can reduce light absorption using reflective leaf hairs, scales, and waxes. These features are so common in warm dry regions that these habitats can be seen to form a 'silvery landscape' as the light scatters off the canopies. Some species, such as Macroptilium purpureum, can move their leaves throughout the day so that they are always orientated to avoid the sun (paraheliotropism). Knowledge of these mechanisms has been key to breeding for heat stress tolerance in agricultural plants.[citation needed]
Plants can avoid the full impact of low temperatures by altering their microclimate. For example, Raoulia plants found in the uplands of New Zealand are said to resemble 'vegetable sheep' as they form tight cushion-like clumps to insulate the most vulnerable plant parts and shield them from cooling winds. The same principle has been applied in agriculture by using plastic mulch to insulate the growing points of crops in cool climates in order to boost plant growth.
Water
Too much or too little water can damage plants. If there is too little water then tissues will dehydrate and the plant may die. If the soil becomes waterlogged then the soil will become anoxic (low in oxygen), which can kill the roots of the plant.
The ability of plants to access water depends on the structure of their roots and on the water potential of the root cells. When soil water content is low, plants can alter their water potential to maintain a flow of water into the roots and up to the leaves (Soil plant atmosphere continuum). This remarkable mechanism allows plants to lift water as high as 120 m by harnessing the gradient created by transpiration from the leaves.
In very dry soil, plants close their stomata to reduce transpiration and prevent water loss. The closing of the stomata is often mediated by chemical signals from the root (i.e., abscisic acid). In irrigated fields, the fact that plants close their stomata in response to drying of the roots can be exploited to 'trick' plants into using less water without reducing yields (see partial rootzone drying). The use of this technique was largely developed by Dr Peter Dry and colleagues in Australia
If drought continues, the plant tissues will dehydrate, resulting in a loss of turgor pressure that is visible as wilting. As well as closing their stomata, most plants can also respond to drought by altering their water potential (osmotic adjustment) and increasing root growth. Plants that are adapted to dry environments (Xerophytes) have a range of more specialized mechanisms to maintain water and/or protect tissues when desiccation occurs.
Waterlogging reduces the supply of oxygen to the roots and can kill a plant within days. Plants cannot avoid waterlogging, but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged. Species that are tolerant of waterlogging develop specialised roots near the soil surface and aerenchyma to allow the diffusion of oxygen from the shoot to the root. Roots that are not killed outright may also switch to less oxygen-hungry forms of cellular respiration. Species that are frequently submerged have evolved more elaborate mechanisms that maintain root oxygen levels, such as the aerial roots seen in mangrove forests.
However, for many terminally overwatered houseplants, the initial symptoms of waterlogging can resemble those due to drought. This is particularly true for flood-sensitive plants that show drooping of their leaves due to epinasty (rather than wilting).
CO2 concentration
CO2 is vital for plant growth, as it is the substrate for photosynthesis. Plants take in CO2 through stomatal pores on their leaves. At the same time as CO2 enters the stomata, moisture escapes. This trade-off between CO2 gain and water loss is central to plant productivity. The trade-off is all the more critical as Rubisco, the enzyme used to capture CO2, is efficient only when there is a high concentration of CO2 in the leaf. Some plants overcome this difficulty by concentrating CO2 within their leaves using C4 carbon fixation or Crassulacean acid metabolism. However, most species used C3 carbon fixation and must open their stomata to take in CO2 whenever photosynthesis is taking place.[citation needed]
The concentration of CO2 in the atmosphere is rising due to deforestation and the combustion of fossil fuels. This would be expected to increase the efficiency of photosynthesis and possibly increase the overall rate of plant growth. This possibility has attracted considerable interest in recent years, as an increased rate of plant growth could absorb some of the excess CO2 and reduce the rate of global warming. Extensive experiments growing plants under elevated CO2 using Free-Air Concentration Enrichment have shown that photosynthetic efficiency does indeed increase. Plant growth rates also increase, by an average of 17% for above-ground tissue and 30% for below-ground tissue. However, detrimental impacts of global warming, such as increased instances of heat and drought stress, mean that the overall effect is likely to be a reduction in plant productivity. Reduced plant productivity would be expected to accelerate the rate of global warming. Overall, these observations point to the importance of avoiding further increases in atmospheric CO2 rather than risking runaway climate change.
Wind
Wind has three very different effects on plants.
- It affects the exchanges of mass (water evaporation, CO2) and of energy (heat) between the plant and the atmosphere by renewing the air at the contact with the leaves (convection).
- It is sensed as a signal driving a wind-acclimation syndrome by the plant known as thigmomorphogenesis, leading to modified growth and development and eventually to wind hardening.
- Its drag force can damage the plant (leaf abrasion, wind ruptures in branches and stems and windthrows and toppling in trees and lodging in crops).
Exchange of mass and energy
Wind influences the way leaves regulate moisture, heat, and carbon dioxide. When no wind is present, a layer of still air builds up around each leaf. This is known as the boundary layer and in effect insulates the leaf from the environment, providing an atmosphere rich in moisture and less prone to convective heating or cooling. As wind speed increases, the leaf environment becomes more closely linked to the surrounding environment. It may become difficult for the plant to retain moisture as it is exposed to dry air. On the other hand, a moderately high wind allows the plant to cool its leaves more easily when exposed to full sunlight. Plants are not entirely passive in their interaction with wind. Plants can make their leaves less vulnerable to changes in wind speed, by coating their leaves in fine hairs (trichomes) to break up the airflow and increase the boundary layer. In fact, leaf and canopy dimensions are often finely controlled to manipulate the boundary layer depending on the prevailing environmental conditions.
Acclimation
Plants can sense the wind through the deformation of its tissues. This signal leads to inhibits the elongation and stimulates the radial expansion of their shoots, while increasing the development of their root system. This syndrome of responses known as thigmomorphogenesis results in shorter, stockier plants with strengthened stems, as well as to an improved anchorage. It was once believed that this occurs mostly in very windy areas. But it has been found that it happens even in areas with moderate winds, so that wind-induced signal were found to be a major ecological factor.
Trees have a particularly well-developed capacity to reinforce their trunks when exposed to wind. From the practical side, this realisation prompted arboriculturalists in the UK in the 1960s to move away from the practice of staking young amenity trees to offer artificial support.
Wind damage
Wind can damage most of the organs of the plants. Leaf abrasion (due to the rubbing of leaves and branches or to the effect of airborne particles such as sand) and leaf of branch breakage are rather common phenomena, that plants have to accommodate. In the more extreme cases, plants can be mortally damaged or uprooted by wind. This has been a major selective pressure acting over terrestrial plants. Nowadays, it is one of the major threatening for agriculture and forestry even in temperate zones. It is worse for agriculture in hurricane-prone regions, such as the banana-growing Windward Islands in the Caribbean.
When this type of disturbance occurs in natural systems, the only solution is to ensure that there is an adequate stock of seeds or seedlings to quickly take the place of the mature plants that have been lost- although, in many cases, a successional stage will be needed before the ecosystem can be restored to its former state.
Animals
Humans
The environment can have major influences on human physiology. Environmental effects on human physiology are numerous; one of the most carefully studied effects is the alterations in thermoregulation in the body due to outside stresses. This is necessary because in order for enzymes to function, blood to flow, and for various body organs to operate, temperature must remain at consistent, balanced levels.[citation needed]
Thermoregulation
To achieve this, the body alters three main things to achieve a constant, normal body temperature:
- Heat transfer to the epidermis
- The rate of evaporation
- The rate of heat production
The hypothalamus plays an important role in thermoregulation. It connects to thermal receptors in the dermis, and detects changes in surrounding blood to make decisions of whether to stimulate internal heat production or to stimulate evaporation.
There are two main types of stresses that can be experienced due to extreme environmental temperatures: heat stress and cold stress.
Heat stress is physiologically combated in four ways: radiation, conduction, convection, and evaporation. Cold stress is physiologically combated by shivering, accumulation of body fat, circulatory adaptations (that provide an efficient transfer of heat to the epidermis), and increased blood flow to the extremities.
There is one part of the body fully equipped to deal with cold stress. The respiratory system protects itself against damage by warming the incoming air to 80-90 degrees Fahrenheit before it reaches the bronchi. This means that not even the most frigid of temperatures can damage the respiratory tract.
In both types of temperature-related stress, it is important to remain well-hydrated. Hydration reduces cardiovascular strain, enhances the ability of energy processes to occur, and reduces feelings of exhaustion.
Altitude
Extreme temperatures are not the only obstacles that humans face. High altitudes also pose serious physiological challenges on the body. Some of these effects are reduced arterial , the rebalancing of the acid-base content in body fluids, increased hemoglobin, increased RBC synthesis, enhanced circulation, and increased levels of the glycolysis byproduct 2,3 diphosphoglycerate, which promotes off-loading of O2 by hemoglobin in the hypoxic tissues.
Environmental factors can play a huge role in the human body's fight for homeostasis. However, humans have found ways to adapt, both physiologically and tangibly.[citation needed]
Scientists
George A. Bartholomew (1919–2006) was a founder of animal physiological ecology. He served on the faculty at UCLA from 1947 to 1989, and almost 1,200 individuals can trace their academic lineages to him.Knut Schmidt-Nielsen (1915–2007) was also an important contributor to this specific scientific field as well as comparative physiology.
Hermann Rahn (1912–1990) was an early leader in the field of environmental physiology. Starting out in the field of zoology with a Ph.D. from University of Rochester (1933), Rahn began teaching physiology at the University of Rochester in 1941. It is there that he partnered with Wallace O. Fenn to publish A Graphical Analysis of the Respiratory Gas Exchange in 1955. This paper included the landmark O2-CO2 diagram, which formed the basis for much of Rahn's future work. Rahn's research into applications of this diagram led to the development of aerospace medicine and advancements in hyperbaric breathing and high-altitude respiration. Rahn later joined the University at Buffalo in 1956 as the Lawrence D. Bell Professor and Chairman of the Department of Physiology. As Chairman, Rahn surrounded himself with outstanding faculty and made the University an international research center in environmental physiology.
See also
- Comparative physiology
- Evolutionary physiology
- Ecology
- Phylogenetic comparative methods
- Plant physiology
- Raymond B. Huey
- Theodore Garland, Jr.
- Tyrone Hayes
References
- Ernst Haeckel, The Wonders of Life: "I proposed long ago to call this special part of biology œcology (the science of home-relations) or bionomy." "
- Bhattacharya, Amitav (2019), "Radiation-Use Efficiency Under Different Climatic Conditions", Changing Climate and Resource Use Efficiency in Plants, Elsevier, pp. 51–109, doi:10.1016/B978-0-12-816209-5.00002-7, ISBN 978-0-12-816209-5
- Zhang, Man; Ming, Yu; Wang, Hong-Bin; Jin, Hong-Lei (13 May 2024). "Strategies for adaptation to high light in plants". aBIOTECH. 5 (3): 381–393. doi:10.1007/s42994-024-00164-6. ISSN 2662-1738. PMC 11399379. PMID 39279858.
- Yang, Jingli; Song, Jinnan; Jeong, Byoung Ryong (23 February 2022). "Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency". International Journal of Molecular Sciences. 23 (5): 2448. doi:10.3390/ijms23052448. ISSN 1422-0067. PMC 8910434. PMID 35269590.
- David Lee (2010). Nature's Palette: The Science of Plant Color. University of Chicago Press. ISBN 978-0-226-47105-1.
- Plant Ecology. Springer. 2005. ISBN 978-3-540-20833-4.
- Farrell, A. D.; Gilliland, T. J. (2011). "Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland". Grass and Forage Science. 66 (2): 214. Bibcode:2011GForS..66..214F. doi:10.1111/j.1365-2494.2010.00778.x.
- Orsák, Matyáš; Kotíková, Zora; Hnilička, František; Lachman, Jaromír (25 April 2023). "Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato". Plant, Soil and Environment. 69 (4): 152–160. doi:10.17221/415/2022-pse. ISSN 1214-1178.
- George Koch; Stephen Sillett; Gregg Jennings; Stephen Davis (May 2006). "How Water Climbs to the Top of a 112 Meter-Tall Tree". Plant Physiology Online, A Companion to Plant Physiology, Fifth Edition by Lincoln Taiz and Eduardo Zeiger. Archived from the original on 14 September 2013.
- Stoll, M.; Loveys, B.; Dry, P. (2000). "Hormonal changes induced by partial rootzone drying of irrigated grapevine". Journal of Experimental Botany. 51 (350): 1627–1634. doi:10.1093/jexbot/51.350.1627. PMID 11006312.
- "The Impact of Flooding Stress on Plants and Crops". Archived from the original on 3 May 2013. Retrieved 29 April 2013.
- Ng, Peter K.L.; Sivasothi, N (2001). "How plants cope in the mangroves". A Guide to the Mangroves of Singapore. Retrieved 19 April 2019.
- Taub, Daniel R. (2010). "Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants". Nature Education Knowledge. 3 (10). www.nature.com. 21. Retrieved 8 February 2023.
- Ainsworth, E. A.; Long, S. P. (2004). "What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2". New Phytologist. 165 (2): 351–371. doi:10.1111/j.1469-8137.2004.01224.x. PMID 15720649.
- Martin Lewis Parry (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability : Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. Cambridge University Press. p. 214. ISBN 978-0-521-88010-7.
- Long, S. P.; Ort, D. R. (2010). "More than taking the heat: Crops and global change". Current Opinion in Plant Biology. 13 (3): 241–8. Bibcode:2010COPB...13..240L. doi:10.1016/j.pbi.2010.04.008. PMID 20494611.
- Lobell, D. B.; Schlenker, W.; Costa-Roberts, J. (2011). "Climate Trends and Global Crop Production Since 1980". Science. 333 (6042): 616–620. Bibcode:2011Sci...333..616L. doi:10.1126/science.1204531. PMID 21551030. S2CID 19177121.
- "How Climate Change Will Affect Plants – State of the Planet". 27 January 2022. Retrieved 2 September 2024.
- Gardiner, Barry; Berry, Peter; Moulia, Bruno (2016). "Review: Wind impacts on plant growth, mechanics and damage". Plant Science. 245: 94–118. Bibcode:2016PlnSc.245...94G. doi:10.1016/j.plantsci.2016.01.006. PMID 26940495.
- Moore, J. R.; Tombleson, J. D.; Turner, J. A.; van der Colff, M. (1 July 2008). "Wind effects on juvenile trees: a review with special reference to toppling of radiata pine growing in New Zealand". Forestry. 81 (3): 377–387. doi:10.1093/forestry/cpn023. ISSN 0015-752X.
- Vogel, S. (2009). "Leaves in the lowest and highest winds: temperature, force and shape". New Phytologist. 183 (1): 13–26. Bibcode:2009NewPh.183...13V. doi:10.1111/j.1469-8137.2009.02854.x. PMID 19413689.
- Jaffe, M. J. (1 June 1973). "Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation". Planta. 114 (2): 143–157. Bibcode:1973Plant.114..143J. doi:10.1007/bf00387472. ISSN 0032-0935. PMID 24458719. S2CID 25308919.
- Ennos, A (1997). "Wind as an ecological factor". Trends in Ecology & Evolution. 12 (3): 108–111. Bibcode:1997TEcoE..12..108E. doi:10.1016/s0169-5347(96)10066-5. PMID 21237994.
- Grace, J. (1988). "3. Plant response to wind". Agriculture, Ecosystems & Environment. 22–23: 71–88. Bibcode:1988AgEE...22...71G. doi:10.1016/0167-8809(88)90008-4.
- Rowe, Nick; Speck, Thomas (1 April 2005). "Plant growth forms: an ecological and evolutionary perspective". New Phytologist. 166 (1): 61–72. Bibcode:2005NewPh.166...61R. doi:10.1111/j.1469-8137.2004.01309.x. ISSN 1469-8137. PMID 15760351.
- "We mustn't abandon the Windward Islands' farmers | Renwick Rose and Nick Mathiason". TheGuardian.com. 23 December 2010.
- Płoszczyca, Kamila; Czuba, Miłosz; Chalimoniuk, Małgorzata; Gajda, Robert; Baranowski, Marcin (15 June 2021). "Red Blood Cell 2,3-Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists". Frontiers in Physiology. 12: 670977. doi:10.3389/fphys.2021.670977. ISSN 1664-042X. PMC 8239298. PMID 34211402.
- BartGen Tree Archived 7 July 2012 at archive.today
- Egerton, Frank N. (October 2019). "History of Ecological Sciences, Part 64: History of Physiological Ecology of Animals". The Bulletin of the Ecological Society of America. 100 (4). Bibcode:2019BuESA.100E1616E. doi:10.1002/bes2.1616. ISSN 0012-9623.
Further reading
- Bennett, A. F.; C. Lowe (2005). "The academic genealogy of George A. Bartholomew". Integrative and Comparative Biology. 45 (2): 231–233. CiteSeerX 10.1.1.589.3158. doi:10.1093/icb/45.2.231. ISSN 1540-7063. PMID 21676766.
- Bradshaw, Sidney Donald (2003). Vertebrate ecophysiology: an introduction to its principles and applications. Cambridge, U.K.: Cambridge University Press. p. xi + 287 pp. ISBN 978-0-521-81797-4.
- Calow, P. (1987). Evolutionary physiological ecology. Cambridge: Cambridge University Press. p. 239 pp. ISBN 978-0-521-32058-0.
- Karasov, W. H.; C. Martinez del Rio (2007). Physiological ecology: how animals process energy, nutrients, and toxins. Princeton, NJ: Princeton University Press. p. xv + 741 pp. ISBN 978-0-691-07453-5.
- Lambers, H. (1998). Plant physiological ecology. New York: Springer-Verlag. ISBN 978-0-387-98326-4.
- Larcher, W. (2001). Physiological plant ecology (4th ed.). Springer. ISBN 978-3-540-43516-7.
- McNab, B. K. (2002). The physiological ecology of vertebrates: a view from energetics. Ithaca and London: Comstock Publishing Associates. xxvii + 576 pp. ISBN 978-0-8014-3913-1.
- Sibly, R. M.; P. Calow (1986). Physiological ecology of animals: an evolutionary approach. Oxford: Blackwell Scientific Publications. p. 179 pp. ISBN 978-0-632-01494-1.
- Spicer, J. I., and K. J. Gaston. 1999. Physiological diversity and its ecological implications. Blackwell Science, Oxford, U.K. x + 241 pp.
- Tracy, C. R.; J. S. Turner (1982). "What is physiological ecology?". Bulletin of the Ecological Society of America. 63 (4): 340–347. doi:10.2307/20166334. ISSN 0012-9623. JSTOR 20166334. S2CID 86354445.. Definitions and Opinions by: G. A. Bartholomew, A. F. Bennett, W. D. Billings, B. F. Chabot, D. M. Gates, B. Heinrich, R. B. Huey, D. H. Janzen, J. R. King, P. A. McClure, B. K. McNab, P. C. Miller, P. S. Nobel, B. R. Strain.
Ecophysiology from Greek oἶkos oikos house hold fysis physis nature origin and logia logia environmental physiology or physiological ecology is a biological discipline that studies the response of an organism s physiology to environmental conditions It is closely related to comparative physiology and evolutionary physiology Ernst Haeckel s coinage bionomy is sometimes employed as a synonym PlantsPlant ecophysiology is concerned largely with two topics mechanisms how plants sense and respond to environmental change and scaling or integration how the responses to highly variable conditions for example gradients from full sunlight to 95 shade within tree canopies are coordinated with one another and how their collective effect on plant growth and gas exchange can be understood on this basis citation needed In many cases animals are able to escape unfavourable and changing environmental factors such as heat cold drought or floods while plants are unable to move away and therefore must endure the adverse conditions or perish animals go places plants grow places Plants are therefore phenotypically plastic and have an impressive array of genes that aid in acclimating to changing conditions It is hypothesized that this large number of genes can be partly explained by plant species need to live in a wider range of conditions Light Light is the food of plants i e the form of energy that plants use to build themselves and reproduce The organs harvesting light in plants are leaves and the process through which light is converted into biomass is photosynthesis The response of photosynthesis to light is called light response curve of net photosynthesis PI curve The shape is typically described by a non rectangular hyperbola Three quantities of the light response curve are particularly useful in characterising a plant s response to light intensities The inclined asymptote has a positive slope representing the efficiency of light use and is called quantum efficiency the x intercept is the light intensity at which biochemical assimilation gross assimilation balances leaf respiration so that the net CO2 exchange of the leaf is zero called light compensation point and a horizontal asymptote representing the maximum assimilation rate Sometimes after reaching the maximum assimilation declines for processes collectively known as photoinhibition As with most abiotic factors light intensity irradiance can be both suboptimal and excessive Suboptimal light shade typically occurs at the base of a plant canopy or in an understory environment Shade tolerant plants have a range of adaptations to help them survive the altered quantity and quality of light typical of shade environments Excess light occurs at the top of canopies and on open ground when cloud cover is low and the sun s zenith angle is low typically this occurs in the tropics and at high altitudes Excess light incident on a leaf can result in photoinhibition and photodestruction Plants adapted to high light environments have a range of adaptations to avoid or dissipate the excess light energy as well as mechanisms that reduce the amount of injury caused Light intensity is also an important component in determining the temperature of plant organs energy budget Temperature In response to extremes of temperature plants can produce various proteins These protect them from the damaging effects of ice formation and falling rates of enzyme catalysis at low temperatures and from enzyme denaturation and increased photorespiration at high temperatures As temperatures fall production of antifreeze proteins and dehydrins increases As temperatures rise production of heat shock proteins increases Metabolic imbalances associated with temperature extremes result in the build up of reactive oxygen species which can be countered by antioxidant systems Cell membranes are also affected by changes in temperature and can cause the membrane to lose its fluid properties and become a gel in cold conditions or to become leaky in hot conditions This can affect the movement of compounds across the membrane To prevent these changes plants can change the composition of their membranes In cold conditions more unsaturated fatty acids are placed in the membrane and in hot conditions more saturated fatty acids are inserted Infrared image showing the importance of transpiration in keeping leaves cool Plants can avoid overheating by minimising the amount of sunlight absorbed and by enhancing the cooling effects of wind and transpiration Plants can reduce light absorption using reflective leaf hairs scales and waxes These features are so common in warm dry regions that these habitats can be seen to form a silvery landscape as the light scatters off the canopies Some species such as Macroptilium purpureum can move their leaves throughout the day so that they are always orientated to avoid the sun paraheliotropism Knowledge of these mechanisms has been key to breeding for heat stress tolerance in agricultural plants citation needed Plants can avoid the full impact of low temperatures by altering their microclimate For example Raoulia plants found in the uplands of New Zealand are said to resemble vegetable sheep as they form tight cushion like clumps to insulate the most vulnerable plant parts and shield them from cooling winds The same principle has been applied in agriculture by using plastic mulch to insulate the growing points of crops in cool climates in order to boost plant growth Water Too much or too little water can damage plants If there is too little water then tissues will dehydrate and the plant may die If the soil becomes waterlogged then the soil will become anoxic low in oxygen which can kill the roots of the plant The ability of plants to access water depends on the structure of their roots and on the water potential of the root cells When soil water content is low plants can alter their water potential to maintain a flow of water into the roots and up to the leaves Soil plant atmosphere continuum This remarkable mechanism allows plants to lift water as high as 120 m by harnessing the gradient created by transpiration from the leaves In very dry soil plants close their stomata to reduce transpiration and prevent water loss The closing of the stomata is often mediated by chemical signals from the root i e abscisic acid In irrigated fields the fact that plants close their stomata in response to drying of the roots can be exploited to trick plants into using less water without reducing yields see partial rootzone drying The use of this technique was largely developed by Dr Peter Dry and colleagues in Australia If drought continues the plant tissues will dehydrate resulting in a loss of turgor pressure that is visible as wilting As well as closing their stomata most plants can also respond to drought by altering their water potential osmotic adjustment and increasing root growth Plants that are adapted to dry environments Xerophytes have a range of more specialized mechanisms to maintain water and or protect tissues when desiccation occurs Waterlogging reduces the supply of oxygen to the roots and can kill a plant within days Plants cannot avoid waterlogging but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged Species that are tolerant of waterlogging develop specialised roots near the soil surface and aerenchyma to allow the diffusion of oxygen from the shoot to the root Roots that are not killed outright may also switch to less oxygen hungry forms of cellular respiration Species that are frequently submerged have evolved more elaborate mechanisms that maintain root oxygen levels such as the aerial roots seen in mangrove forests However for many terminally overwatered houseplants the initial symptoms of waterlogging can resemble those due to drought This is particularly true for flood sensitive plants that show drooping of their leaves due to epinasty rather than wilting CO2 concentration CO2 is vital for plant growth as it is the substrate for photosynthesis Plants take in CO2 through stomatal pores on their leaves At the same time as CO2 enters the stomata moisture escapes This trade off between CO2 gain and water loss is central to plant productivity The trade off is all the more critical as Rubisco the enzyme used to capture CO2 is efficient only when there is a high concentration of CO2 in the leaf Some plants overcome this difficulty by concentrating CO2 within their leaves using C4 carbon fixation or Crassulacean acid metabolism However most species used C3 carbon fixation and must open their stomata to take in CO2 whenever photosynthesis is taking place citation needed source source source source Plant Productivity in a Warming World The concentration of CO2 in the atmosphere is rising due to deforestation and the combustion of fossil fuels This would be expected to increase the efficiency of photosynthesis and possibly increase the overall rate of plant growth This possibility has attracted considerable interest in recent years as an increased rate of plant growth could absorb some of the excess CO2 and reduce the rate of global warming Extensive experiments growing plants under elevated CO2 using Free Air Concentration Enrichment have shown that photosynthetic efficiency does indeed increase Plant growth rates also increase by an average of 17 for above ground tissue and 30 for below ground tissue However detrimental impacts of global warming such as increased instances of heat and drought stress mean that the overall effect is likely to be a reduction in plant productivity Reduced plant productivity would be expected to accelerate the rate of global warming Overall these observations point to the importance of avoiding further increases in atmospheric CO2 rather than risking runaway climate change Wind Wind has three very different effects on plants It affects the exchanges of mass water evaporation CO2 and of energy heat between the plant and the atmosphere by renewing the air at the contact with the leaves convection It is sensed as a signal driving a wind acclimation syndrome by the plant known as thigmomorphogenesis leading to modified growth and development and eventually to wind hardening Its drag force can damage the plant leaf abrasion wind ruptures in branches and stems and windthrows and toppling in trees and lodging in crops Exchange of mass and energy Wind influences the way leaves regulate moisture heat and carbon dioxide When no wind is present a layer of still air builds up around each leaf This is known as the boundary layer and in effect insulates the leaf from the environment providing an atmosphere rich in moisture and less prone to convective heating or cooling As wind speed increases the leaf environment becomes more closely linked to the surrounding environment It may become difficult for the plant to retain moisture as it is exposed to dry air On the other hand a moderately high wind allows the plant to cool its leaves more easily when exposed to full sunlight Plants are not entirely passive in their interaction with wind Plants can make their leaves less vulnerable to changes in wind speed by coating their leaves in fine hairs trichomes to break up the airflow and increase the boundary layer In fact leaf and canopy dimensions are often finely controlled to manipulate the boundary layer depending on the prevailing environmental conditions Acclimation Plants can sense the wind through the deformation of its tissues This signal leads to inhibits the elongation and stimulates the radial expansion of their shoots while increasing the development of their root system This syndrome of responses known as thigmomorphogenesis results in shorter stockier plants with strengthened stems as well as to an improved anchorage It was once believed that this occurs mostly in very windy areas But it has been found that it happens even in areas with moderate winds so that wind induced signal were found to be a major ecological factor Trees have a particularly well developed capacity to reinforce their trunks when exposed to wind From the practical side this realisation prompted arboriculturalists in the UK in the 1960s to move away from the practice of staking young amenity trees to offer artificial support Wind damage Wind can damage most of the organs of the plants Leaf abrasion due to the rubbing of leaves and branches or to the effect of airborne particles such as sand and leaf of branch breakage are rather common phenomena that plants have to accommodate In the more extreme cases plants can be mortally damaged or uprooted by wind This has been a major selective pressure acting over terrestrial plants Nowadays it is one of the major threatening for agriculture and forestry even in temperate zones It is worse for agriculture in hurricane prone regions such as the banana growing Windward Islands in the Caribbean When this type of disturbance occurs in natural systems the only solution is to ensure that there is an adequate stock of seeds or seedlings to quickly take the place of the mature plants that have been lost although in many cases a successional stage will be needed before the ecosystem can be restored to its former state AnimalsHumans The environment can have major influences on human physiology Environmental effects on human physiology are numerous one of the most carefully studied effects is the alterations in thermoregulation in the body due to outside stresses This is necessary because in order for enzymes to function blood to flow and for various body organs to operate temperature must remain at consistent balanced levels citation needed Thermoregulation To achieve this the body alters three main things to achieve a constant normal body temperature Heat transfer to the epidermis The rate of evaporation The rate of heat production The hypothalamus plays an important role in thermoregulation It connects to thermal receptors in the dermis and detects changes in surrounding blood to make decisions of whether to stimulate internal heat production or to stimulate evaporation There are two main types of stresses that can be experienced due to extreme environmental temperatures heat stress and cold stress Heat stress is physiologically combated in four ways radiation conduction convection and evaporation Cold stress is physiologically combated by shivering accumulation of body fat circulatory adaptations that provide an efficient transfer of heat to the epidermis and increased blood flow to the extremities There is one part of the body fully equipped to deal with cold stress The respiratory system protects itself against damage by warming the incoming air to 80 90 degrees Fahrenheit before it reaches the bronchi This means that not even the most frigid of temperatures can damage the respiratory tract In both types of temperature related stress it is important to remain well hydrated Hydration reduces cardiovascular strain enhances the ability of energy processes to occur and reduces feelings of exhaustion Altitude Extreme temperatures are not the only obstacles that humans face High altitudes also pose serious physiological challenges on the body Some of these effects are reduced arterial PO2 displaystyle P mathrm O 2 the rebalancing of the acid base content in body fluids increased hemoglobin increased RBC synthesis enhanced circulation and increased levels of the glycolysis byproduct 2 3 diphosphoglycerate which promotes off loading of O2 by hemoglobin in the hypoxic tissues Environmental factors can play a huge role in the human body s fight for homeostasis However humans have found ways to adapt both physiologically and tangibly citation needed Scientists George A Bartholomew 1919 2006 was a founder of animal physiological ecology He served on the faculty at UCLA from 1947 to 1989 and almost 1 200 individuals can trace their academic lineages to him Knut Schmidt Nielsen 1915 2007 was also an important contributor to this specific scientific field as well as comparative physiology Hermann Rahn 1912 1990 was an early leader in the field of environmental physiology Starting out in the field of zoology with a Ph D from University of Rochester 1933 Rahn began teaching physiology at the University of Rochester in 1941 It is there that he partnered with Wallace O Fenn to publish A Graphical Analysis of the Respiratory Gas Exchange in 1955 This paper included the landmark O2 CO2 diagram which formed the basis for much of Rahn s future work Rahn s research into applications of this diagram led to the development of aerospace medicine and advancements in hyperbaric breathing and high altitude respiration Rahn later joined the University at Buffalo in 1956 as the Lawrence D Bell Professor and Chairman of the Department of Physiology As Chairman Rahn surrounded himself with outstanding faculty and made the University an international research center in environmental physiology See alsoEcology portalBiology portalEnvironment portalComparative physiology Evolutionary physiology Ecology Phylogenetic comparative methods Plant physiology Raymond B Huey Theodore Garland Jr Tyrone HayesReferencesErnst Haeckel The Wonders of Life I proposed long ago to call this special part of biology œcology the science of home relations or bionomy Bhattacharya Amitav 2019 Radiation Use Efficiency Under Different Climatic Conditions Changing Climate and Resource Use Efficiency in Plants Elsevier pp 51 109 doi 10 1016 B978 0 12 816209 5 00002 7 ISBN 978 0 12 816209 5 Zhang Man Ming Yu Wang Hong Bin Jin Hong Lei 13 May 2024 Strategies for adaptation to high light in plants aBIOTECH 5 3 381 393 doi 10 1007 s42994 024 00164 6 ISSN 2662 1738 PMC 11399379 PMID 39279858 Yang Jingli Song Jinnan Jeong Byoung Ryong 23 February 2022 Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency International Journal of Molecular Sciences 23 5 2448 doi 10 3390 ijms23052448 ISSN 1422 0067 PMC 8910434 PMID 35269590 David Lee 2010 Nature s Palette The Science of Plant Color University of Chicago Press ISBN 978 0 226 47105 1 Plant Ecology Springer 2005 ISBN 978 3 540 20833 4 Farrell A D Gilliland T J 2011 Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland Grass and Forage Science 66 2 214 Bibcode 2011GForS 66 214F doi 10 1111 j 1365 2494 2010 00778 x Orsak Matyas Kotikova Zora Hnilicka Frantisek Lachman Jaromir 25 April 2023 Effect of long term drought and waterlogging stress on photosynthetic pigments in potato Plant Soil and Environment 69 4 152 160 doi 10 17221 415 2022 pse ISSN 1214 1178 George Koch Stephen Sillett Gregg Jennings Stephen Davis May 2006 How Water Climbs to the Top of a 112 Meter Tall Tree Plant Physiology Online A Companion to Plant Physiology Fifth Edition by Lincoln Taiz and Eduardo Zeiger Archived from the original on 14 September 2013 Stoll M Loveys B Dry P 2000 Hormonal changes induced by partial rootzone drying of irrigated grapevine Journal of Experimental Botany 51 350 1627 1634 doi 10 1093 jexbot 51 350 1627 PMID 11006312 The Impact of Flooding Stress on Plants and Crops Archived from the original on 3 May 2013 Retrieved 29 April 2013 Ng Peter K L Sivasothi N 2001 How plants cope in the mangroves A Guide to the Mangroves of Singapore Retrieved 19 April 2019 Taub Daniel R 2010 Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants Nature Education Knowledge 3 10 www nature com 21 Retrieved 8 February 2023 Ainsworth E A Long S P 2004 What have we learned from 15 years of free air CO2 enrichment FACE A meta analytic review of the responses of photosynthesis canopy properties and plant production to rising CO2 New Phytologist 165 2 351 371 doi 10 1111 j 1469 8137 2004 01224 x PMID 15720649 Martin Lewis Parry 2007 Climate Change 2007 Impacts Adaptation and Vulnerability Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change Cambridge University Press p 214 ISBN 978 0 521 88010 7 Long S P Ort D R 2010 More than taking the heat Crops and global change Current Opinion in Plant Biology 13 3 241 8 Bibcode 2010COPB 13 240L doi 10 1016 j pbi 2010 04 008 PMID 20494611 Lobell D B Schlenker W Costa Roberts J 2011 Climate Trends and Global Crop Production Since 1980 Science 333 6042 616 620 Bibcode 2011Sci 333 616L doi 10 1126 science 1204531 PMID 21551030 S2CID 19177121 How Climate Change Will Affect Plants State of the Planet 27 January 2022 Retrieved 2 September 2024 Gardiner Barry Berry Peter Moulia Bruno 2016 Review Wind impacts on plant growth mechanics and damage Plant Science 245 94 118 Bibcode 2016PlnSc 245 94G doi 10 1016 j plantsci 2016 01 006 PMID 26940495 Moore J R Tombleson J D Turner J A van der Colff M 1 July 2008 Wind effects on juvenile trees a review with special reference to toppling of radiata pine growing in New Zealand Forestry 81 3 377 387 doi 10 1093 forestry cpn023 ISSN 0015 752X Vogel S 2009 Leaves in the lowest and highest winds temperature force and shape New Phytologist 183 1 13 26 Bibcode 2009NewPh 183 13V doi 10 1111 j 1469 8137 2009 02854 x PMID 19413689 Jaffe M J 1 June 1973 Thigmomorphogenesis The response of plant growth and development to mechanical stimulation Planta 114 2 143 157 Bibcode 1973Plant 114 143J doi 10 1007 bf00387472 ISSN 0032 0935 PMID 24458719 S2CID 25308919 Ennos A 1997 Wind as an ecological factor Trends in Ecology amp Evolution 12 3 108 111 Bibcode 1997TEcoE 12 108E doi 10 1016 s0169 5347 96 10066 5 PMID 21237994 Grace J 1988 3 Plant response to wind Agriculture Ecosystems amp Environment 22 23 71 88 Bibcode 1988AgEE 22 71G doi 10 1016 0167 8809 88 90008 4 Rowe Nick Speck Thomas 1 April 2005 Plant growth forms an ecological and evolutionary perspective New Phytologist 166 1 61 72 Bibcode 2005NewPh 166 61R doi 10 1111 j 1469 8137 2004 01309 x ISSN 1469 8137 PMID 15760351 We mustn t abandon the Windward Islands farmers Renwick Rose and Nick Mathiason TheGuardian com 23 December 2010 Ploszczyca Kamila Czuba Milosz Chalimoniuk Malgorzata Gajda Robert Baranowski Marcin 15 June 2021 Red Blood Cell 2 3 Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists Frontiers in Physiology 12 670977 doi 10 3389 fphys 2021 670977 ISSN 1664 042X PMC 8239298 PMID 34211402 BartGen Tree Archived 7 July 2012 at archive today Egerton Frank N October 2019 History of Ecological Sciences Part 64 History of Physiological Ecology of Animals The Bulletin of the Ecological Society of America 100 4 Bibcode 2019BuESA 100E1616E doi 10 1002 bes2 1616 ISSN 0012 9623 Further readingBennett A F C Lowe 2005 The academic genealogy of George A Bartholomew Integrative and Comparative Biology 45 2 231 233 CiteSeerX 10 1 1 589 3158 doi 10 1093 icb 45 2 231 ISSN 1540 7063 PMID 21676766 Bradshaw Sidney Donald 2003 Vertebrate ecophysiology an introduction to its principles and applications Cambridge U K Cambridge University Press p xi 287 pp ISBN 978 0 521 81797 4 Calow P 1987 Evolutionary physiological ecology Cambridge Cambridge University Press p 239 pp ISBN 978 0 521 32058 0 Karasov W H C Martinez del Rio 2007 Physiological ecology how animals process energy nutrients and toxins Princeton NJ Princeton University Press p xv 741 pp ISBN 978 0 691 07453 5 Lambers H 1998 Plant physiological ecology New York Springer Verlag ISBN 978 0 387 98326 4 Larcher W 2001 Physiological plant ecology 4th ed Springer ISBN 978 3 540 43516 7 McNab B K 2002 The physiological ecology of vertebrates a view from energetics Ithaca and London Comstock Publishing Associates xxvii 576 pp ISBN 978 0 8014 3913 1 Sibly R M P Calow 1986 Physiological ecology of animals an evolutionary approach Oxford Blackwell Scientific Publications p 179 pp ISBN 978 0 632 01494 1 Spicer J I and K J Gaston 1999 Physiological diversity and its ecological implications Blackwell Science Oxford U K x 241 pp Tracy C R J S Turner 1982 What is physiological ecology Bulletin of the Ecological Society of America 63 4 340 347 doi 10 2307 20166334 ISSN 0012 9623 JSTOR 20166334 S2CID 86354445 Definitions and Opinions by G A Bartholomew A F Bennett W D Billings B F Chabot D M Gates B Heinrich R B Huey D H Janzen J R King P A McClure B K McNab P C Miller P S Nobel B R Strain Library resources about Ecophysiology Resources in your library