![Imaginary number](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi82LzY5L0NvbXBsZXhfY29uanVnYXRlX3BpY3R1cmUuc3ZnLzE2MDBweC1Db21wbGV4X2Nvbmp1Z2F0ZV9waWN0dXJlLnN2Zy5wbmc=.png )
The powers of i are cyclic: |
---|
is a 4th root of unity |
An imaginary number is the product of a real number and the imaginary unit i, which is defined by its property i2 = −1. The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary.
Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century).
An imaginary number bi can be added to a real number a to form a complex number of the form a + bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the complex number.
History
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODJMelk1TDBOdmJYQnNaWGhmWTI5dWFuVm5ZWFJsWDNCcFkzUjFjbVV1YzNabkx6SXlNSEI0TFVOdmJYQnNaWGhmWTI5dWFuVm5ZWFJsWDNCcFkzUjFjbVV1YzNabkxuQnVadz09LnBuZw==.png)
Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572. The concept had appeared in print earlier, such as in work by Gerolamo Cardano. At the time, imaginary numbers and negative numbers were poorly understood and were regarded by some as fictitious or useless, much as zero once was. Many other mathematicians were slow to adopt the use of imaginary numbers, including René Descartes, who wrote about them in his La Géométrie in which he coined the term imaginary and meant it to be derogatory. The use of imaginary numbers was not widely accepted until the work of Leonhard Euler (1707–1783) and Carl Friedrich Gauss (1777–1855). The geometric significance of complex numbers as points in a plane was first described by Caspar Wessel (1745–1818).
In 1843, William Rowan Hamilton extended the idea of an axis of imaginary numbers in the plane to a four-dimensional space of quaternion imaginaries in which three of the dimensions are analogous to the imaginary numbers in the complex field.
Geometric interpretation
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHdMekE0TDFKdmRHRjBhVzl1YzE5dmJsOTBhR1ZmWTI5dGNHeGxlRjl3YkdGdVpTNXpkbWN2TWpJd2NIZ3RVbTkwWVhScGIyNXpYMjl1WDNSb1pWOWpiMjF3YkdWNFgzQnNZVzVsTG5OMlp5NXdibWM9LnBuZw==.png)
Geometrically, imaginary numbers are found on the vertical axis of the complex number plane, which allows them to be presented perpendicular to the real axis. One way of viewing imaginary numbers is to consider a standard number line positively increasing in magnitude to the right and negatively increasing in magnitude to the left. At 0 on the x-axis, a y-axis can be drawn with "positive" direction going up; "positive" imaginary numbers then increase in magnitude upwards, and "negative" imaginary numbers increase in magnitude downwards. This vertical axis is often called the "imaginary axis" and is denoted
or ℑ.
In this representation, multiplication by i corresponds to a counterclockwise rotation of 90 degrees about the origin, which is a quarter of a circle. Multiplication by −i corresponds to a clockwise rotation of 90 degrees about the origin. Similarly, multiplying by a purely imaginary number bi, with b a real number, both causes a counterclockwise rotation about the origin by 90 degrees and scales the answer by a factor of b. When b < 0, this can instead be described as a clockwise rotation by 90 degrees and a scaling by |b|.
Square roots of negative numbers
Care must be used when working with imaginary numbers that are expressed as the principal values of the square roots of negative numbers. For example, if x and y are both positive real numbers, the following chain of equalities appears reasonable at first glance:
But the result is clearly nonsense. The step where the square root was broken apart was illegitimate. (See Mathematical fallacy.)
See also
- −1
- Dual number
- Split-complex number
|
Notes
- j is usually used in engineering contexts where i has other meanings (such as electrical current)
References
- Uno Ingard, K. (1988). "Chapter 2". Fundamentals of Waves and Oscillations. Cambridge University Press. p. 38. ISBN 0-521-33957-X.
- Weisstein, Eric W. "Imaginary Number". mathworld.wolfram.com. Retrieved 2020-08-10.
- Sinha, K.C. (2008). A Text Book of Mathematics Class XI (Second ed.). Rastogi Publications. p. 11.2. ISBN 978-81-7133-912-9.
- Giaquinta, Mariano; Modica, Giuseppe (2004). Mathematical Analysis: Approximation and Discrete Processes (illustrated ed.). Springer Science & Business Media. p. 121. ISBN 978-0-8176-4337-9. Extract of page 121
- Aufmann, Richard; Barker, Vernon C.; Nation, Richard (2009). College Algebra: Enhanced Edition (6th ed.). Cengage Learning. p. 66. ISBN 978-1-4390-4379-0.
- Hargittai, István (1992). Fivefold Symmetry (2 ed.). World Scientific. p. 153. ISBN 981-02-0600-3.
- Roy, Stephen Campbell (2007). Complex Numbers: lattice simulation and zeta function applications. Horwood. p. 1. ISBN 978-1-904275-25-1.
- Descartes, René, Discours de la méthode (Leiden, (Netherlands): Jan Maire, 1637), appended book: La Géométrie, book three, p. 380. From page 380: "Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousjours en imaginer autant que jay dit en chasque Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a celles qu'on imagine, comme encore qu'on en puisse imaginer trois en celle cy, x3 – 6xx + 13x – 10 = 0, il n'y en a toutefois qu'une reelle, qui est 2, & pour les deux autres, quoy qu'on les augmente, ou diminue, ou multiplie en la façon que je viens d'expliquer, on ne sçauroit les rendre autres qu'imaginaires." (Moreover, the true roots as well as the false [roots] are not always real; but sometimes only imaginary [quantities]; that is to say, one can always imagine as many of them in each equation as I said; but there is sometimes no quantity that corresponds to what one imagines, just as although one can imagine three of them in this [equation], x3 – 6xx + 13x – 10 = 0, only one of them however is real, which is 2, and regarding the other two, although one increase, or decrease, or multiply them in the manner that I just explained, one would not be able to make them other than imaginary [quantities].)
- Martinez, Albert A. (2006), Negative Math: How Mathematical Rules Can Be Positively Bent, Princeton: Princeton University Press, ISBN 0-691-12309-8, discusses ambiguities of meaning in imaginary expressions in historical context.
- Rozenfeld, Boris Abramovich (1988). "Chapter 10". A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space. Springer. p. 382. ISBN 0-387-96458-4.
- von Meier, Alexandra (2006). Electric Power Systems – A Conceptual Introduction. John Wiley & Sons. pp. 61–62. ISBN 0-471-17859-4. Retrieved 2022-01-13.
- Webb, Stephen (2018). "5. Meaningless marks on paper". Clash of Symbols – A Ride Through the Riches of Glyphs. Springer Science+Business Media. pp. 204–205. doi:10.1007/978-3-319-71350-2_5. ISBN 978-3-319-71350-2.
- Kuipers, J. B. (1999). Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press. pp. 10–11. ISBN 0-691-10298-8. Retrieved 2022-01-13.
- Nahin, Paul J. (2010). An Imaginary Tale: The Story of "i" [the square root of minus one]. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9. Extract of page 12
Bibliography
- Nahin, Paul (1998). An Imaginary Tale: the Story of the Square Root of −1. Princeton: Princeton University Press. ISBN 0-691-02795-1., explains many applications of imaginary expressions.
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODVMems1TDFkcGEzUnBiMjVoY25rdGJHOW5ieTFsYmkxMk1pNXpkbWN2TkRCd2VDMVhhV3QwYVc5dVlYSjVMV3h2WjI4dFpXNHRkakl1YzNabkxuQnVadz09LnBuZw==.png)
- How can one show that imaginary numbers really do exist? – an article that discusses the existence of imaginary numbers.
- 5Numbers programme 4 BBC Radio 4 programme
- Why Use Imaginary Numbers? Archived 2019-08-25 at the Wayback Machine Basic Explanation and Uses of Imaginary Numbers
The powers of i are cyclic displaystyle vdots i 2 1i displaystyle i 2 1 phantom i i 1 i1 displaystyle i 1 i phantom 1 i0 1i displaystyle i 0 phantom 1 phantom i i1 i1 displaystyle i 1 phantom i phantom 1 i2 1i displaystyle i 2 1 phantom i i3 i1 displaystyle i 3 i phantom 1 i4 1i displaystyle i 4 phantom 1 phantom i i5 i1 displaystyle i 5 phantom i phantom 1 displaystyle vdots i displaystyle i is a 4th root of unity An imaginary number is the product of a real number and the imaginary unit i which is defined by its property i2 1 The square of an imaginary number bi is b2 For example 5i is an imaginary number and its square is 25 The number zero is considered to be both real and imaginary Originally coined in the 17th century by Rene Descartes as a derogatory term and regarded as fictitious or useless the concept gained wide acceptance following the work of Leonhard Euler in the 18th century and Augustin Louis Cauchy and Carl Friedrich Gauss in the early 19th century An imaginary number bi can be added to a real number a to form a complex number of the form a bi where the real numbers a and b are called respectively the real part and the imaginary part of the complex number HistoryAn illustration of the complex plane The imaginary numbers are on the vertical coordinate axis Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572 The concept had appeared in print earlier such as in work by Gerolamo Cardano At the time imaginary numbers and negative numbers were poorly understood and were regarded by some as fictitious or useless much as zero once was Many other mathematicians were slow to adopt the use of imaginary numbers including Rene Descartes who wrote about them in his La Geometrie in which he coined the term imaginary and meant it to be derogatory The use of imaginary numbers was not widely accepted until the work of Leonhard Euler 1707 1783 and Carl Friedrich Gauss 1777 1855 The geometric significance of complex numbers as points in a plane was first described by Caspar Wessel 1745 1818 In 1843 William Rowan Hamilton extended the idea of an axis of imaginary numbers in the plane to a four dimensional space of quaternion imaginaries in which three of the dimensions are analogous to the imaginary numbers in the complex field Geometric interpretation90 degree rotations in the complex plane Geometrically imaginary numbers are found on the vertical axis of the complex number plane which allows them to be presented perpendicular to the real axis One way of viewing imaginary numbers is to consider a standard number line positively increasing in magnitude to the right and negatively increasing in magnitude to the left At 0 on the x axis a y axis can be drawn with positive direction going up positive imaginary numbers then increase in magnitude upwards and negative imaginary numbers increase in magnitude downwards This vertical axis is often called the imaginary axis and is denoted iR displaystyle i mathbb R I displaystyle mathbb I or ℑ In this representation multiplication by i corresponds to a counterclockwise rotation of 90 degrees about the origin which is a quarter of a circle Multiplication by i corresponds to a clockwise rotation of 90 degrees about the origin Similarly multiplying by a purely imaginary number bi with b a real number both causes a counterclockwise rotation about the origin by 90 degrees and scales the answer by a factor of b When b lt 0 this can instead be described as a clockwise rotation by 90 degrees and a scaling by b Square roots of negative numbersCare must be used when working with imaginary numbers that are expressed as the principal values of the square roots of negative numbers For example if x and y are both positive real numbers the following chain of equalities appears reasonable at first glance x yt x y fallacy xty yty ixty iyty x yty displaystyle textstyle sqrt x cdot y vphantom t sqrt x cdot y mathrel stackrel text fallacy sqrt x vphantom ty cdot sqrt y vphantom ty i sqrt x vphantom ty cdot i sqrt y vphantom ty sqrt x cdot y vphantom ty But the result is clearly nonsense The step where the square root was broken apart was illegitimate See Mathematical fallacy See also 1 Dual number Split complex numberNumber systems Complex C displaystyle mathbb C Real R displaystyle mathbb R Rational Q displaystyle mathbb Q Integer Z displaystyle mathbb Z Natural N displaystyle mathbb N Zero 0One 1Prime numbersComposite numbersNegative integersFraction Finite decimalDyadic finite binary Repeating decimalIrrational Algebraic irrationalIrrational periodTranscendentalImaginaryNotesj is usually used in engineering contexts where i has other meanings such as electrical current ReferencesUno Ingard K 1988 Chapter 2 Fundamentals of Waves and Oscillations Cambridge University Press p 38 ISBN 0 521 33957 X Weisstein Eric W Imaginary Number mathworld wolfram com Retrieved 2020 08 10 Sinha K C 2008 A Text Book of Mathematics Class XI Second ed Rastogi Publications p 11 2 ISBN 978 81 7133 912 9 Giaquinta Mariano Modica Giuseppe 2004 Mathematical Analysis Approximation and Discrete Processes illustrated ed Springer Science amp Business Media p 121 ISBN 978 0 8176 4337 9 Extract of page 121 Aufmann Richard Barker Vernon C Nation Richard 2009 College Algebra Enhanced Edition 6th ed Cengage Learning p 66 ISBN 978 1 4390 4379 0 Hargittai Istvan 1992 Fivefold Symmetry 2 ed World Scientific p 153 ISBN 981 02 0600 3 Roy Stephen Campbell 2007 Complex Numbers lattice simulation and zeta function applications Horwood p 1 ISBN 978 1 904275 25 1 Descartes Rene Discours de la methode Leiden Netherlands Jan Maire 1637 appended book La Geometrie book three p 380 From page 380 Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles mais quelquefois seulement imaginaires c est a dire qu on peut bien tousjours en imaginer autant que jay dit en chasque Equation mais qu il n y a quelquefois aucune quantite qui corresponde a celles qu on imagine comme encore qu on en puisse imaginer trois en celle cy x3 6xx 13x 10 0 il n y en a toutefois qu une reelle qui est 2 amp pour les deux autres quoy qu on les augmente ou diminue ou multiplie en la facon que je viens d expliquer on ne scauroit les rendre autres qu imaginaires Moreover the true roots as well as the false roots are not always real but sometimes only imaginary quantities that is to say one can always imagine as many of them in each equation as I said but there is sometimes no quantity that corresponds to what one imagines just as although one can imagine three of them in this equation x3 6xx 13x 10 0 only one of them however is real which is 2 and regarding the other two although one increase or decrease or multiply them in the manner that I just explained one would not be able to make them other than imaginary quantities Martinez Albert A 2006 Negative Math How Mathematical Rules Can Be Positively Bent Princeton Princeton University Press ISBN 0 691 12309 8 discusses ambiguities of meaning in imaginary expressions in historical context Rozenfeld Boris Abramovich 1988 Chapter 10 A History of Non Euclidean Geometry Evolution of the Concept of a Geometric Space Springer p 382 ISBN 0 387 96458 4 von Meier Alexandra 2006 Electric Power Systems A Conceptual Introduction John Wiley amp Sons pp 61 62 ISBN 0 471 17859 4 Retrieved 2022 01 13 Webb Stephen 2018 5 Meaningless marks on paper Clash of Symbols A Ride Through the Riches of Glyphs Springer Science Business Media pp 204 205 doi 10 1007 978 3 319 71350 2 5 ISBN 978 3 319 71350 2 Kuipers J B 1999 Quaternions and Rotation Sequences A Primer with Applications to Orbits Aerospace and Virtual Reality Princeton University Press pp 10 11 ISBN 0 691 10298 8 Retrieved 2022 01 13 Nahin Paul J 2010 An Imaginary Tale The Story of i the square root of minus one Princeton University Press p 12 ISBN 978 1 4008 3029 9 Extract of page 12BibliographyNahin Paul 1998 An Imaginary Tale the Story of the Square Root of 1 Princeton Princeton University Press ISBN 0 691 02795 1 explains many applications of imaginary expressions External linksLook up imaginary number in Wiktionary the free dictionary How can one show that imaginary numbers really do exist an article that discusses the existence of imaginary numbers 5Numbers programme 4 BBC Radio 4 programme Why Use Imaginary Numbers Archived 2019 08 25 at the Wayback Machine Basic Explanation and Uses of Imaginary Numbers