
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity,lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all.
A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume.
From Noether's theorem, every differentiable symmetry leads to a conservation law. Other conserved quantities can exist as well.
Conservation laws as fundamental laws of nature
Conservation laws are fundamental to our understanding of the physical world, in that they describe which processes can or cannot occur in nature. For example, the conservation law of energy states that the total quantity of energy in an isolated system does not change, though it may change form. In general, the total quantity of the property governed by that law remains unchanged during physical processes. With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle. With respect to symmetries and invariance principles, three special conservation laws have been described, associated with inversion or reversal of space, time, and charge.
Conservation laws are considered to be fundamental laws of nature, with broad application in physics, as well as in other fields such as chemistry, biology, geology, and engineering.
Most conservation laws are exact, or absolute, in the sense that they apply to all possible processes. Some conservation laws are partial, in that they hold for some processes but not for others.
One particularly important result concerning conservation laws is Noether's theorem, which states that there is a one-to-one correspondence between each one of them and a differentiable symmetry of the Universe. For example, the conservation of energy follows from the uniformity of time and the conservation of angular momentum arises from the isotropy of space, i.e. because there is no preferred direction of space. Notably, there is no conservation law associated with time-reversal, although more complex conservation laws combining time-reversal with other symmetries are known.
Exact laws
This section does not cite any sources.(August 2023) |
A partial listing of physical conservation equations due to symmetry that are said to be exact laws, or more precisely have never been proven to be violated:
Conservation law | Respective Noether symmetry invariance | Number of independent parameters (i.e. dimension of phase space) | ||
---|---|---|---|---|
Conservation of mass-energy E | Time-translation invariance | Poincaré invariance | 1 | translation of time along t-axis |
Conservation of linear momentum p | Space-translation invariance | 3 | translation of space along x,y,z axes | |
Conservation of angular momentum L = r × p | Rotation invariance | 3 | rotation of space about x,y,z axes | |
Conservation of boost 3-vector N = tp - Er | Lorentz-boost invariance | 3 | Lorentz-boost of space-time along x,y,z axes | |
Conservation of electric charge | U(1)QGauge invariance | 1 | translation of electrodynamic scalar potential field along V-axis (in phase space) | |
Conservation of color charge | SU(3)CGauge invariance | 3 | translation of chromodynamic potential field along r,g,b-axes (in phase space) | |
Conservation of weak isospin | SU(2)LGauge invariance | 1 | translation of weak potential field along axis in phase space | |
Conservation of the difference between baryon and lepton numbers B - L | U(1)B-L Gauge invariance | 1 |
Another exact symmetry is CPT symmetry, the simultaneous inversion of space and time coordinates, together with swapping all particles with their antiparticles; however being a discrete symmetry Noether's theorem does not apply to it. Accordingly, the conserved quantity, , can usually not be meaningfully calculated or determined.
Approximate laws
This section does not cite any sources.(August 2023) |
There are also approximate conservation laws. These are approximately true in particular situations, such as low speeds, short time scales, or certain interactions.
- Conservation of mechanical energy
- Conservation of mass (approximately true for nonrelativistic speeds)
- Conservation of baryon number (See chiral anomaly and sphaleron)
- Conservation of lepton number (In the Standard Model)
- Conservation of flavor (violated by the weak interaction)
- Conservation of strangeness (violated by the weak interaction)
- Conservation of space-parity (violated by the weak interaction)
- Conservation of charge-parity (violated by the weak interaction)
- Conservation of time-parity (violated by the weak interaction)
- Conservation of CP parity (violated by the weak interaction); in the Standard Model, this is equivalent to conservation of time-parity.
Global and local conservation laws
The total amount of some conserved quantity in the universe could remain unchanged if an equal amount were to appear at one point A and simultaneously disappear from another separate point B. For example, an amount of energy could appear on Earth without changing the total amount in the Universe if the same amount of energy were to disappear from some other region of the Universe. This weak form of "global" conservation is really not a conservation law because it is not Lorentz invariant, so phenomena like the above do not occur in nature. Due to special relativity, if the appearance of the energy at A and disappearance of the energy at B are simultaneous in one inertial reference frame, they will not be simultaneous in other inertial reference frames moving with respect to the first. In a moving frame one will occur before the other; either the energy at A will appear before or after the energy at B disappears. In both cases, during the interval energy will not be conserved.
A stronger form of conservation law requires that, for the amount of a conserved quantity at a point to change, there must be a flow, or flux of the quantity into or out of the point. For example, the amount of electric charge at a point is never found to change without an electric current into or out of the point that carries the difference in charge. Since it only involves continuous local changes, this stronger type of conservation law is Lorentz invariant; a quantity conserved in one reference frame is conserved in all moving reference frames. This is called a local conservation law. Local conservation also implies global conservation; that the total amount of the conserved quantity in the Universe remains constant. All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in general.
Differential forms
In continuum mechanics, the most general form of an exact conservation law is given by a continuity equation. For example, conservation of electric charge q is where ∇⋅ is the divergence operator, ρ is the density of q (amount per unit volume), j is the flux of q (amount crossing a unit area in unit time), and t is time.
If we assume that the motion u of the charge is a continuous function of position and time, then
In one space dimension this can be put into the form of a homogeneous first-order quasilinear hyperbolic equation:: 43 where the dependent variable y is called the density of a conserved quantity, and A(y) is called the , and the subscript notation for partial derivatives has been employed. The more general inhomogeneous case:
is not a conservation equation but the general kind of balance equation describing a dissipative system. The dependent variable y is called a nonconserved quantity, and the inhomogeneous term s(y,x,t) is the-source, or dissipation. For example, balance equations of this kind are the momentum and energy Navier-Stokes equations, or the entropy balance for a general isolated system.
In the one-dimensional space a conservation equation is a first-order quasilinear hyperbolic equation that can be put into the advection form: where the dependent variable y(x,t) is called the density of the conserved (scalar) quantity, and a(y) is called the current coefficient, usually corresponding to the partial derivative in the conserved quantity of a current density of the conserved quantity j(y):: 43
In this case since the chain rule applies: the conservation equation can be put into the current density form:
In a space with more than one dimension the former definition can be extended to an equation that can be put into the form:
where the conserved quantity is y(r,t), ⋅ denotes the scalar product, ∇ is the nabla operator, here indicating a gradient, and a(y) is a vector of current coefficients, analogously corresponding to the divergence of a vector current density associated to the conserved quantity j(y):
This is the case for the continuity equation:
Here the conserved quantity is the mass, with density ρ(r,t) and current density ρu, identical to the momentum density, while u(r, t) is the flow velocity.
In the general case a conservation equation can be also a system of this kind of equations (a vector equation) in the form:: 43 where y is called the conserved (vector) quantity, ∇y is its gradient, 0 is the zero vector, and A(y) is called the Jacobian of the current density. In fact as in the former scalar case, also in the vector case A(y) usually corresponding to the Jacobian of a J(y):
and the conservation equation can be put into the form:
For example, this the case for Euler equations (fluid dynamics). In the simple incompressible case they are:
where:
- u is the flow velocity vector, with components in a N-dimensional space u1, u2, ..., uN,
- s is the specific pressure (pressure per unit density) giving the source term,
It can be shown that the conserved (vector) quantity and the current density matrix for these equations are respectively:
where denotes the outer product.
Integral and weak forms
Conservation equations can usually also be expressed in integral form: the advantage of the latter is substantially that it requires less smoothness of the solution, which paves the way to weak form, extending the class of admissible solutions to include discontinuous solutions.: 62–63 By integrating in any space-time domain the current density form in 1-D space: and by using Green's theorem, the integral form is:
In a similar fashion, for the scalar multidimensional space, the integral form is: where the line integration is performed along the boundary of the domain, in an anticlockwise manner.: 62–63
Moreover, by defining a test function φ(r,t) continuously differentiable both in time and space with compact support, the weak form can be obtained pivoting on the initial condition. In 1-D space it is:
In the weak form all the partial derivatives of the density and current density have been passed on to the test function, which with the former hypothesis is sufficiently smooth to admit these derivatives.: 62–63
See also
- Invariant (physics)
- Momentum
- Cauchy momentum equation
- Energy
- Conservation of energy and the First law of thermodynamics
- Conservative system
- Conserved quantity
- Some kinds of helicity are conserved in dissipationless limit: hydrodynamical helicity, magnetic helicity, .
- Principle of mutability
- Conservation law of the Stress–energy tensor
- Riemann invariant
- Philosophy of physics
- Totalitarian principle
- Convection–diffusion equation
- Uniformity of nature
Examples and applications
- Advection
- Mass conservation, or Continuity equation
- Charge conservation
- Euler equations (fluid dynamics)
- inviscid Burgers equation
- Kinematic wave
- Conservation of energy
- Traffic flow
Notes
- Lee, T.D.; Yang, C.N. (1956). "Question of Parity Conservation in Weak Interactions". Physical Review. 104 (1): 254–258. Bibcode:1956PhRv..104..254L. doi:10.1103/PhysRev.104.254.
- Ibragimov, N. H. CRC HANDBOOK OF LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS VOLUME 1 -SYMMETRIES EXACT SOLUTIONS AND CONSERVATION LAWS. (CRC Press, 2023)
- Kosmann-Schwarzbach, Y. in The Philosophy and Physics of Noether’s Theorems: A Centenary Volume 4-24 (Cambridge University Press, 2022)
- Rao, A. K., Tripathi, A., Chauhan, B. & Malik, R. P. Noether Theorem and Nilpotency Property of the (Anti-)BRST Charges in the BRST Formalism: A Brief Review. Universe 8 (2022). https://doi.org/10.3390/universe8110566
- Ibragimov, N. H. CRC HANDBOOK OF LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS VOLUME 1 -SYMMETRIES EXACT SOLUTIONS AND CONSERVATION LAWS. (CRC Press, 2023).
- Kosmann-Schwarzbach, Y. in The Philosophy and Physics of Noether’s Theorems: A Centenary Volume 4-24 (Cambridge University Press, 2022).
- Rao, A. K., Tripathi, A., Chauhan, B. & Malik, R. P. Noether Theorem and Nilpotency Property of the (Anti-)BRST Charges in the BRST Formalism: A Brief Review. Universe 8 (2022). https://doi.org/10.3390/universe8110566
- Aitchison, Ian J. R.; Hey, Anthony J.G. (2012). Gauge Theories in Particle Physics: A Practical Introduction: From Relativistic Quantum Mechanics to QED, Fourth Edition, Vol. 1. CRC Press. p. 43. ISBN 978-1466512993. Archived from the original on 2018-05-04.
- Will, Clifford M. (1993). Theory and Experiment in Gravitational Physics. Cambridge Univ. Press. p. 105. ISBN 978-0521439732. Archived from the original on 2017-02-20.
- Toro, E.F. (1999). "Chapter 2. Notions on Hyperbolic PDEs". Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag. ISBN 978-3-540-65966-2.
References
- Philipson, Schuster, Modeling by Nonlinear Differential Equations: Dissipative and Conservative Processes, World Scientific Publishing Company 2009.
- Victor J. Stenger, 2000. Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Buffalo NY: Prometheus Books. Chpt. 12 is a gentle introduction to symmetry, invariance, and conservation laws.
- E. Godlewski and P.A. Raviart, Hyperbolic systems of conservation laws, Ellipses, 1991.
External links
Media related to Conservation laws at Wikimedia Commons
- Conservation Laws – Ch. 11–15 in an online textbook
In physics a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time Exact conservation laws include conservation of mass energy conservation of linear momentum conservation of angular momentum and conservation of electric charge There are also many approximate conservation laws which apply to such quantities as mass parity lepton number baryon number strangeness hypercharge etc These quantities are conserved in certain classes of physics processes but not in all A local conservation law is usually expressed mathematically as a continuity equation a partial differential equation which gives a relation between the amount of the quantity and the transport of that quantity It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume From Noether s theorem every differentiable symmetry leads to a conservation law Other conserved quantities can exist as well Conservation laws as fundamental laws of natureConservation laws are fundamental to our understanding of the physical world in that they describe which processes can or cannot occur in nature For example the conservation law of energy states that the total quantity of energy in an isolated system does not change though it may change form In general the total quantity of the property governed by that law remains unchanged during physical processes With respect to classical physics conservation laws include conservation of energy mass or matter linear momentum angular momentum and electric charge With respect to particle physics particles cannot be created or destroyed except in pairs where one is ordinary and the other is an antiparticle With respect to symmetries and invariance principles three special conservation laws have been described associated with inversion or reversal of space time and charge Conservation laws are considered to be fundamental laws of nature with broad application in physics as well as in other fields such as chemistry biology geology and engineering Most conservation laws are exact or absolute in the sense that they apply to all possible processes Some conservation laws are partial in that they hold for some processes but not for others One particularly important result concerning conservation laws is Noether s theorem which states that there is a one to one correspondence between each one of them and a differentiable symmetry of the Universe For example the conservation of energy follows from the uniformity of time and the conservation of angular momentum arises from the isotropy of space i e because there is no preferred direction of space Notably there is no conservation law associated with time reversal although more complex conservation laws combining time reversal with other symmetries are known Exact lawsThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed August 2023 Learn how and when to remove this message A partial listing of physical conservation equations due to symmetry that are said to be exact laws or more precisely have never been proven to be violated Conservation law Respective Noether symmetry invariance Number of independent parameters i e dimension of phase space Conservation of mass energy E Time translation invariance Poincare invariance 1 translation of time along t axisConservation of linear momentum p Space translation invariance 3 translation of space along x y z axesConservation of angular momentum L r p Rotation invariance 3 rotation of space about x y z axesConservation of boost 3 vector N tp Er Lorentz boost invariance 3 Lorentz boost of space time along x y z axesConservation of electric charge U 1 QGauge invariance 1 translation of electrodynamic scalar potential field along V axis in phase space Conservation of color charge SU 3 CGauge invariance 3 translation of chromodynamic potential field along r g b axes in phase space Conservation of weak isospin SU 2 LGauge invariance 1 translation of weak potential field along axis in phase spaceConservation of the difference between baryon and lepton numbers B L U 1 B L Gauge invariance 1 Another exact symmetry is CPT symmetry the simultaneous inversion of space and time coordinates together with swapping all particles with their antiparticles however being a discrete symmetry Noether s theorem does not apply to it Accordingly the conserved quantity can usually not be meaningfully calculated or determined Approximate lawsThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed August 2023 Learn how and when to remove this message There are also approximate conservation laws These are approximately true in particular situations such as low speeds short time scales or certain interactions Conservation of mechanical energy Conservation of mass approximately true for nonrelativistic speeds Conservation of baryon number See chiral anomaly and sphaleron Conservation of lepton number In the Standard Model Conservation of flavor violated by the weak interaction Conservation of strangeness violated by the weak interaction Conservation of space parity violated by the weak interaction Conservation of charge parity violated by the weak interaction Conservation of time parity violated by the weak interaction Conservation of CP parity violated by the weak interaction in the Standard Model this is equivalent to conservation of time parity Global and local conservation lawsThe total amount of some conserved quantity in the universe could remain unchanged if an equal amount were to appear at one point A and simultaneously disappear from another separate point B For example an amount of energy could appear on Earth without changing the total amount in the Universe if the same amount of energy were to disappear from some other region of the Universe This weak form of global conservation is really not a conservation law because it is not Lorentz invariant so phenomena like the above do not occur in nature Due to special relativity if the appearance of the energy at A and disappearance of the energy at B are simultaneous in one inertial reference frame they will not be simultaneous in other inertial reference frames moving with respect to the first In a moving frame one will occur before the other either the energy at A will appear before or after the energy at B disappears In both cases during the interval energy will not be conserved A stronger form of conservation law requires that for the amount of a conserved quantity at a point to change there must be a flow or flux of the quantity into or out of the point For example the amount of electric charge at a point is never found to change without an electric current into or out of the point that carries the difference in charge Since it only involves continuous local changes this stronger type of conservation law is Lorentz invariant a quantity conserved in one reference frame is conserved in all moving reference frames This is called a local conservation law Local conservation also implies global conservation that the total amount of the conserved quantity in the Universe remains constant All of the conservation laws listed above are local conservation laws A local conservation law is expressed mathematically by a continuity equation which states that the change in the quantity in a volume is equal to the total net flux of the quantity through the surface of the volume The following sections discuss continuity equations in general Differential formsIn continuum mechanics the most general form of an exact conservation law is given by a continuity equation For example conservation of electric charge q is r t j displaystyle frac partial rho partial t nabla cdot mathbf j where is the divergence operator r is the density of q amount per unit volume j is the flux of q amount crossing a unit area in unit time and t is time If we assume that the motion u of the charge is a continuous function of position and time then j ru r t ru displaystyle begin aligned mathbf j amp rho mathbf u frac partial rho partial t amp nabla cdot rho mathbf u end aligned In one space dimension this can be put into the form of a homogeneous first order quasilinear hyperbolic equation 43 yt A y yx 0 displaystyle y t A y y x 0 where the dependent variable y is called the density of a conserved quantity and A y is called the and the subscript notation for partial derivatives has been employed The more general inhomogeneous case yt A y yx s displaystyle y t A y y x s is not a conservation equation but the general kind of balance equation describing a dissipative system The dependent variable y is called a nonconserved quantity and the inhomogeneous term s y x t is the source or dissipation For example balance equations of this kind are the momentum and energy Navier Stokes equations or the entropy balance for a general isolated system In the one dimensional space a conservation equation is a first order quasilinear hyperbolic equation that can be put into the advection form yt a y yx 0 displaystyle y t a y y x 0 where the dependent variable y x t is called the density of the conserved scalar quantity and a y is called the current coefficient usually corresponding to the partial derivative in the conserved quantity of a current density of the conserved quantity j y 43 a y jy y displaystyle a y j y y In this case since the chain rule applies jx jy y yx a y yx displaystyle j x j y y y x a y y x the conservation equation can be put into the current density form yt jx y 0 displaystyle y t j x y 0 In a space with more than one dimension the former definition can be extended to an equation that can be put into the form yt a y y 0 displaystyle y t mathbf a y cdot nabla y 0 where the conserved quantity is y r t denotes the scalar product is the nabla operator here indicating a gradient and a y is a vector of current coefficients analogously corresponding to the divergence of a vector current density associated to the conserved quantity j y yt j y 0 displaystyle y t nabla cdot mathbf j y 0 This is the case for the continuity equation rt ru 0 displaystyle rho t nabla cdot rho mathbf u 0 Here the conserved quantity is the mass with density r r t and current density ru identical to the momentum density while u r t is the flow velocity In the general case a conservation equation can be also a system of this kind of equations a vector equation in the form 43 yt A y y 0 displaystyle mathbf y t mathbf A mathbf y cdot nabla mathbf y mathbf 0 where y is called the conserved vector quantity y is its gradient 0 is the zero vector and A y is called the Jacobian of the current density In fact as in the former scalar case also in the vector case A y usually corresponding to the Jacobian of a J y A y Jy y displaystyle mathbf A mathbf y mathbf J mathbf y mathbf y and the conservation equation can be put into the form yt J y 0 displaystyle mathbf y t nabla cdot mathbf J mathbf y mathbf 0 For example this the case for Euler equations fluid dynamics In the simple incompressible case they are u 0 u t u u s 0 displaystyle nabla cdot mathbf u 0 qquad frac partial mathbf u partial t mathbf u cdot nabla mathbf u nabla s mathbf 0 where u is the flow velocity vector with components in a N dimensional space u1 u2 uN s is the specific pressure pressure per unit density giving the source term It can be shown that the conserved vector quantity and the current density matrix for these equations are respectively y 1u J uu u sI displaystyle mathbf y begin pmatrix 1 mathbf u end pmatrix qquad mathbf J begin pmatrix mathbf u mathbf u otimes mathbf u s mathbf I end pmatrix qquad where displaystyle otimes denotes the outer product Integral and weak formsConservation equations can usually also be expressed in integral form the advantage of the latter is substantially that it requires less smoothness of the solution which paves the way to weak form extending the class of admissible solutions to include discontinuous solutions 62 63 By integrating in any space time domain the current density form in 1 D space yt jx y 0 displaystyle y t j x y 0 and by using Green s theorem the integral form is ydx 0 j y dt 0 displaystyle int infty infty y dx int 0 infty j y dt 0 In a similar fashion for the scalar multidimensional space the integral form is ydNr j y dt 0 displaystyle oint left y d N r j y dt right 0 where the line integration is performed along the boundary of the domain in an anticlockwise manner 62 63 Moreover by defining a test function f r t continuously differentiable both in time and space with compact support the weak form can be obtained pivoting on the initial condition In 1 D space it is 0 ϕty ϕxj y dxdt ϕ x 0 y x 0 dx displaystyle int 0 infty int infty infty phi t y phi x j y dx dt int infty infty phi x 0 y x 0 dx In the weak form all the partial derivatives of the density and current density have been passed on to the test function which with the former hypothesis is sufficiently smooth to admit these derivatives 62 63 See alsoInvariant physics Momentum Cauchy momentum equation Energy Conservation of energy and the First law of thermodynamics Conservative system Conserved quantity Some kinds of helicity are conserved in dissipationless limit hydrodynamical helicity magnetic helicity Principle of mutability Conservation law of the Stress energy tensor Riemann invariant Philosophy of physics Totalitarian principle Convection diffusion equation Uniformity of natureExamples and applications Advection Mass conservation or Continuity equation Charge conservation Euler equations fluid dynamics inviscid Burgers equation Kinematic wave Conservation of energy Traffic flowNotesLee T D Yang C N 1956 Question of Parity Conservation in Weak Interactions Physical Review 104 1 254 258 Bibcode 1956PhRv 104 254L doi 10 1103 PhysRev 104 254 Ibragimov N H CRC HANDBOOK OF LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS VOLUME 1 SYMMETRIES EXACT SOLUTIONS AND CONSERVATION LAWS CRC Press 2023 Kosmann Schwarzbach Y in The Philosophy and Physics of Noether s Theorems A Centenary Volume 4 24 Cambridge University Press 2022 Rao A K Tripathi A Chauhan B amp Malik R P Noether Theorem and Nilpotency Property of the Anti BRST Charges in the BRST Formalism A Brief Review Universe 8 2022 https doi org 10 3390 universe8110566 Ibragimov N H CRC HANDBOOK OF LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS VOLUME 1 SYMMETRIES EXACT SOLUTIONS AND CONSERVATION LAWS CRC Press 2023 Kosmann Schwarzbach Y in The Philosophy and Physics of Noether s Theorems A Centenary Volume 4 24 Cambridge University Press 2022 Rao A K Tripathi A Chauhan B amp Malik R P Noether Theorem and Nilpotency Property of the Anti BRST Charges in the BRST Formalism A Brief Review Universe 8 2022 https doi org 10 3390 universe8110566 Aitchison Ian J R Hey Anthony J G 2012 Gauge Theories in Particle Physics A Practical Introduction From Relativistic Quantum Mechanics to QED Fourth Edition Vol 1 CRC Press p 43 ISBN 978 1466512993 Archived from the original on 2018 05 04 Will Clifford M 1993 Theory and Experiment in Gravitational Physics Cambridge Univ Press p 105 ISBN 978 0521439732 Archived from the original on 2017 02 20 Toro E F 1999 Chapter 2 Notions on Hyperbolic PDEs Riemann Solvers and Numerical Methods for Fluid Dynamics Springer Verlag ISBN 978 3 540 65966 2 ReferencesPhilipson Schuster Modeling by Nonlinear Differential Equations Dissipative and Conservative Processes World Scientific Publishing Company 2009 Victor J Stenger 2000 Timeless Reality Symmetry Simplicity and Multiple Universes Buffalo NY Prometheus Books Chpt 12 is a gentle introduction to symmetry invariance and conservation laws E Godlewski and P A Raviart Hyperbolic systems of conservation laws Ellipses 1991 External linksMedia related to Conservation laws at Wikimedia Commons Conservation Laws Ch 11 15 in an online textbook