
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced in different ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 4
2He2+ indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom 4
2He.
![]() Alpha decay | |
Composition | 2 protons, 2 neutrons |
---|---|
Statistics | Bosonic |
Symbol | α, α2+, He2+ |
Mass | 6.6446573450(21)×10−27 kg 4.001506179129(62) Da 3.7273794118(11) GeV/c2 |
Electric charge | +2 e |
Spin | 0 ħ |
Alpha particles have a net spin of zero. When produced in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5 MeV and a velocity in the vicinity of 4% of the speed of light. They are a highly ionizing form of particle radiation, with low penetration depth (stopped by a few centimetres of air, or by the skin).
However, so-called long-range alpha particles from ternary fission are three times as energetic and penetrate three times as far. The helium nuclei that form 10–12% of cosmic rays are also usually of much higher energy than those produced by nuclear decay processes, and thus may be highly penetrating and able to traverse the human body and also many metres of dense solid shielding, depending on their energy. To a lesser extent, this is also true of very high-energy helium nuclei produced by particle accelerators.
Name
The term "alpha particle" was coined by Ernest Rutherford in reporting his studies of the properties of uranium radiation. The radiation appeared to have two different characters, the first he called " radiation" and the more penetrating one he called "
radiation". After five years of additional experimental work, Rutherford and Hans Geiger determined that "the alpha particle, after it has lost its positive charge, is a Helium atom".: 61 Alpha radiation consists of particles equivalent to doubly-ionized helium nuclei (He2+) which can gain electrons from passing through matter. This mechanism is the origin of terrestrial helium gas.
Sources
Alpha decay
The best-known source of alpha particles is alpha decay of heavier (mass number of at least 104) atoms. When an atom emits an alpha particle in alpha decay, the atom's mass number decreases by four due to the loss of the four nucleons in the alpha particle. The atomic number of the atom goes down by two, as a result of the loss of two protons – the atom becomes a new element. Examples of this sort of nuclear transmutation by alpha decay are the decay of uranium to thorium, and that of radium to radon.
Alpha particles are commonly emitted by all of the larger radioactive nuclei such as uranium, thorium, actinium, and radium, as well as the transuranic elements. Unlike other types of decay, alpha decay as a process must have a minimum-size atomic nucleus that can support it. The smallest nuclei that have to date been found to be capable of alpha emission are beryllium-8 and tellurium-104, not counting beta-delayed alpha emission of some lighter elements. The alpha decay sometimes leaves the parent nucleus in an excited state; the emission of a gamma ray then removes the excess energy.
Mechanism of production in alpha decay
In contrast to beta decay, the fundamental interactions responsible for alpha decay are a balance between the electromagnetic force and nuclear force. Alpha decay results from the Coulomb repulsion between the alpha particle and the rest of the nucleus, which both have a positive electric charge, but which is kept in check by the nuclear force. In classical physics, alpha particles do not have enough energy to escape the potential well from the strong force inside the nucleus (this well involves escaping the strong force to go up one side of the well, which is followed by the electromagnetic force causing a repulsive push-off down the other side).
However, the quantum tunnelling effect allows alphas to escape even though they do not have enough energy to overcome the nuclear force. This is allowed by the wave nature of matter, which allows the alpha particle to spend some of its time in a region so far from the nucleus that the potential from the repulsive electromagnetic force has fully compensated for the attraction of the nuclear force. From this point, alpha particles can escape.
Ternary fission
Especially energetic alpha particles deriving from a nuclear process are produced in the relatively rare (one in a few hundred) nuclear fission process of ternary fission. In this process, three charged particles are produced from the event instead of the normal two, with the smallest of the charged particles most probably (90% probability) being an alpha particle. Such alpha particles are termed "long range alphas" since at their typical energy of 16 MeV, they are at far higher energy than is ever produced by alpha decay. Ternary fission happens in both neutron-induced fission (the nuclear reaction that happens in a nuclear reactor), and also when fissionable and fissile actinides nuclides (i.e., heavy atoms capable of fission) undergo spontaneous fission as a form of radioactive decay. In both induced and spontaneous fission, the higher energies available in heavy nuclei result in long range alphas of higher energy than those from alpha decay.
Accelerators
Energetic helium nuclei (helium ions) may be produced by cyclotrons, synchrotrons, and other particle accelerators. Convention is that they are not normally referred to as "alpha particles".[citation needed]
Solar core reactions
Helium nuclei may participate in nuclear reactions in stars, and occasionally and historically these have been referred to as alpha reactions (see triple-alpha process and alpha process).
Cosmic rays
In addition, extremely high energy helium nuclei sometimes referred to as alpha particles make up about 10 to 12% of cosmic rays. The mechanisms of cosmic ray production continue to be debated.
Energy and absorption
The energy of the alpha particle emitted in alpha decay is mildly dependent on the half-life for the emission process, with many orders of magnitude differences in half-life being associated with energy changes of less than 50%, shown by the Geiger–Nuttall law.
The energy of alpha particles emitted varies, with higher energy alpha particles being emitted from larger nuclei, but most alpha particles have energies of between 3 and 7 MeV (mega-electron-volts), corresponding to extremely long and extremely short half-lives of alpha-emitting nuclides, respectively. The energies and ratios are often distinct and can be used to identify specific nuclides as in alpha spectrometry.
With a typical kinetic energy of 5 MeV; the speed of emitted alpha particles is 15,000 km/s, which is 5% of the speed of light. This energy is a substantial amount of energy for a single particle, but their high mass means alpha particles have a lower speed than any other common type of radiation, e.g. β particles, neutrons.
Because of their charge and large mass, alpha particles are easily absorbed by materials, and they can travel only a few centimetres in air. They can be absorbed by tissue paper or by the outer layers of human skin. They typically penetrate skin about 40 micrometres, equivalent to a few cells deep.
Biological effects
Due to the short range of absorption and inability to penetrate the outer layers of skin, alpha particles are not, in general, dangerous to life unless the source is ingested or inhaled. Because of this high mass and strong absorption, if alpha-emitting radionuclides do enter the body (upon being inhaled, ingested, or injected, as with the use of Thorotrast for high-quality X-ray images prior to the 1950s), alpha radiation is the most destructive form of ionizing radiation. It is the most strongly ionizing, and with large enough doses can cause any or all of the symptoms of radiation poisoning. It is estimated that chromosome damage from alpha particles is anywhere from 10 to 1000 times greater than that caused by an equivalent amount of gamma or beta radiation, with the average being set at 20 times. A study of European nuclear workers exposed internally to alpha radiation from plutonium and uranium found that when relative biological effectiveness is considered to be 20, the carcinogenic potential (in terms of lung cancer) of alpha radiation appears to be consistent with that reported for doses of external gamma radiation i.e. a given dose of alpha-particles inhaled presents the same risk as a 20-times higher dose of gamma radiation. The powerful alpha emitter polonium-210 (a milligram of 210Po emits as many alpha particles per second as 4.215 grams of 226Ra) is suspected of playing a role in lung cancer and bladder cancer related to tobacco smoking.210Po was used to kill Russian dissident and ex-FSB officer Alexander V. Litvinenko in 2006.
History of discovery and use
In 1896, Henri Becquerel discovered that uranium emits an invisible radiation that can leave marks on photographic plates, and this mystery radiation wasn't phosphorescence.: 49 Marie Curie showed that this phenomenon, which she called "radioactivity", was not unique to uranium and a consequence of individual atoms.: 55 Ernest Rutherford studied uranium radiation and discovered that it could ionize gas particles.: 2
In 1899, Rutherford discovered that uranium radiation is a mixture of two types of radiation.: 60 He performed an experiment which involved two electrodes separated by 4 cm of air. He placed some uranium on the bottom electrode, and the radiation from the uranium ionized the air between the electrodes, creating a current. Rutherford then placed an aluminium foil (5 micrometers thick) over the uranium and noticed that the current dropped a bit, indicating that the foil was absorbing some of the uranium's radiation. Rutherford placed a few more foils over the uranium and found that, for the first four foils, the current steadily decreased at a geometric rate. However, after the fourth layer of foil over the uranium, the current didn't drop anymore and remained more or less level for up to twelve layers of foil. This result indicated that uranium radiation has two components. Rutherford dubbed one component "alpha radiation" which was fully absorbed by just a few layers of foil, and what was left was a second component that could penetrate the foils more easily, and he dubbed the latter "beta radiation".
In 1900, Marie Curie noticed that the absorption coefficient of alpha rays seemed to increase the thicker the barrier she placed in their path. This suggested that alpha radiation is not a form of light but made of particles that lose kinetic energy as they pass through barriers. In 1902, Rutherford found that he could deflect alpha rays with a magnetic field and an electric field, showing that alpha radiation is composed of electrically charged particles. The direction in which the alpha particles were deflected was the opposite of cathode rays, which showed that they are positively charged.
In 1906, Rutherford made some more precise measurements of the charge-to-mass ratio of alpha particles. Firstly, he found that the ratio was more or less the same whether the source was radium or actinium, showing that alpha particles are the same regardless of the source. Secondly, he found the charge-to-mass ratio of alpha particles to be half that of the hydrogen ion. Rutherford proposed three explanations: 1) an alpha particle is a hydrogen molecule (H2) with a charge of 1 e; 2) an alpha particle is an atom of helium with a charge of 2 e; 3) an alpha particle is half a helium atom with a charge of 1 e. At that time in history, scientists knew that hydrogen ions have an atomic weight of 1 and a charge of 1 e, and that helium has an atomic weight of 4. Nobody knew exactly how many electrons were in an atom. Protons and neutrons had not yet been discovered. Rutherford decided the second explanation was the most plausible because it is the simplest and sizeable deposits of helium were commonly found underground next to deposits of radioactive elements. His explanation was that as alpha particles are emitted by underground radioactive elements, they become trapped in the rock strata and acquire electrons, becoming helium atoms. Therefore an alpha particle is essentially a helium atom stripped of two electrons.
In 1909, Ernest Rutherford and Thomas Royds finally proved that alpha particles were indeed helium ions. To do this they collected and purified the gas emitted by radium, a known alpha particle emitter, in a glass tube. An electric spark discharge inside the tube produced light. Subsequent study of the spectra of this light showed that the gas was helium and thus the alpha particles were indeed the helium ions.: 61
In 1911, Rutherford used alpha particle scattering data to argue that the positive charge of an atom is concentrated in a tiny nucleus. In 1913, Antonius van den Broek suggested that anomalies in the periodic table would be reduced if the nuclear charge in an atom and thus the number of electrons in an atom is equal to its atomic number.: 228 Therefore a helium atom has two electrons, and an alpha particle is essentially a helium nucleus. In 1920, Rutherford deduced the existence of the proton as the source of positive charge in the atom. In 1932, James Chadwick discovered the neutron. Thereafter it was known that an alpha particle is an agglomeration of two protons and two neutrons.
Anti-alpha particle
While anti-matter equivalents for helium-3 have been known since 1970, it took until 2010 for members of the international STAR collaboration using the Relativistic Heavy Ion Collider at the U.S. Department of Energy's Brookhaven National Laboratory to detect the antimatter partner of the helium-4 nucleus. Like the Rutherford scattering experiments, the antimatter experiment used gold. This time the gold ions moving at nearly the speed of light and colliding head on to produce the antiparticle, also dubbed "anti-alpha" particle.
Applications
Devices
- Some smoke detectors contain a small amount of the alpha emitter americium-241. The alpha particles ionize air within a small gap. A small current is passed through that ionized air. Smoke particles from fire that enter the air gap reduce the current flow, sounding the alarm. The isotope is extremely dangerous if inhaled or ingested, but the danger is minimal if the source is kept sealed. Many municipalities have established programs to collect and dispose of old smoke detectors, to keep them out of the general waste stream. However the US EPA says they "may be thrown away with household garbage".
- Alpha decay can provide a safe power source for radioisotope thermoelectric generators used for space probes. Alpha decay is much more easily shielded against than other forms of radioactive decay. Plutonium-238, a source of alpha particles, requires only 2.5 mm of lead shielding to protect against unwanted radiation.
- Static eliminators typically use polonium-210, an alpha emitter, to ionize air, allowing the "static cling" to more rapidly dissipate.
Cancer treatment
Alpha-emitting radionuclides are presently being used in three different ways to eradicate cancerous tumors: as an infusible radioactive treatment targeted to specific tissues (radium-223), as a source of radiation inserted directly into solid tumors (radium-224), and as an attachment to an tumor-targeting molecule, such as an antibody to a tumor-associated antigen.
Radium-223 is an alpha emitter that is naturally attracted to the bone because it is a calcium mimetic. Radium-223 (as radium-223 dichloride) can be infused into a cancer patient's veins, after which it migrates to parts of the bone where there is rapid turnover of cells due to the presence of metastasized tumors. Once within the bone, Ra-223 emits alpha radiation that can destroy tumor cells within a 100-micron distance. This approach has been in use since 2013 to treat prostate cancer which has metastasized to the bone. Radionuclides infused into the circulation are able to reach sites that are accessible to blood vessels. This means, however, that the interior of a large tumor that is not vascularized (i.e. is not well penetrated by blood vessels) may not be effectively eradicated by the radioactivity.
Radium-224 is a radioactive atom that is utilized as a source of alpha radiation in a cancer treatment device called DaRT (diffusing alpha emitters radiation therapy). Each radium-224 atom undergoes a decay process producing 6 daughter atoms. During this process, 4 alpha particles are emitted. The range of an alpha particle—up to 100 microns—is insufficient to cover the width of many tumors. However, radium-224's daughter atoms can diffuse up to 2–3 mm in the tissue, thus creating a "kill region" with enough radiation to potentially destroy an entire tumor, if the seeds are placed appropriately. Radium-224's half-life is short enough at 3.6 days to produce a rapid clinical effect while avoiding the risk of radiation damage due to overexposure. At the same time, the half-life is long enough to allow for handling and shipping the seeds to a cancer treatment center at any location across the globe.
Targeted alpha therapy for solid tumors involves attaching an alpha-particle-emitting radionuclide to a tumor-targeting molecule such as an antibody, that can be delivered by intravenous administration to a cancer patient.
Alpha radiation and DRAM errors
In computer technology, dynamic random access memory (DRAM) "soft errors" were linked to alpha particles in 1978 in Intel's DRAM chips. The discovery led to strict control of radioactive elements in the packaging of semiconductor materials, and the problem is largely considered to be solved.
See also
- Alpha nuclide
- Alpha process (Also known as alpha-capture, or the alpha-ladder)
- Beta particle
- Cosmic rays
- Helion, the nucleus of helium-3 rather than helium-4
- List of alpha emitting materials
- Nuclear physics
- Particle physics
- Radioactive isotope
- Rays:
- β (beta) rays
- γ Gamma ray
- δ Delta ray
- ε Epsilon radiation
- Rutherford scattering
References
- "2022 CODATA Value: alpha particle mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
- "2022 CODATA Value: alpha particle mass in u". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
- "2022 CODATA Value: alpha particle mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
- Krane, Kenneth S. (1988). Introductory Nuclear Physics. John Wiley & Sons. pp. 246–269. ISBN 978-0-471-80553-3.
- Bohan, Elise; Dinwiddie, Robert; Challoner, Jack; Stuart, Colin; Harvey, Derek; Wragg-Sykes, Rebecca; Chrisp, Peter; Hubbard, Ben; Parker, Phillip; et al. (Writers) (February 2016). Big History. Foreword by David Christian (1st American ed.). New York: DK. p. 58. ISBN 978-1-4654-5443-0. OCLC 940282526.
- Rutherford distinguished and named α and β rays on page 116 of: E. Rutherford (1899) "Uranium radiation and the electrical conduction produced by it," Philosophical Magazine, Series 5, vol. 47, no. 284, pages 109–163. Rutherford named γ rays on page 177 of: E. Rutherford (1903) "The magnetic and electric deviation of the easily absorbed rays from radium," Philosophical Magazine, Series 6, vol. 5, no. 26, pages 177–187.
- Rutherford, Ernest; Geiger, Hans (2014). "The Charge and Nature of the α-Particle". The Collected Papers of Lord Rutherford of Nelson. Routledge. pp. 109–120.
- Rutherford, E.; Geiger, Hans (1908). "The Charge and Nature of the α-Particle". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 81 (546): 162–173. Bibcode:1908RSPSA..81..162R. doi:10.1098/rspa.1908.0066. ISSN 0950-1207. JSTOR 92981.
- Pais, Abraham (2002). Inward bound: of matter and forces in the physical world (Reprint ed.). Oxford: Clarendon Press [u.a.] ISBN 978-0-19-851997-3.
- Morrison, P.; Pine, J. (1955). "Radiogenic Origin of the Helium Isotopes in Rock". Annals of the New York Academy of Sciences. 62 (3): 71–92. Bibcode:1955NYASA..62...71M. doi:10.1111/j.1749-6632.1955.tb35366.x. ISSN 0077-8923.
- Firestone, Richard B.; Baglin, Coral M. (1999). Table of isotopes (8th ed.). New York: Wiley. ISBN 0-471-35633-6. OCLC 43118182.
- N.B. Since gamma rays are electromagnetic (light) they move at the speed of light (c). Beta particles often move at a large fraction of c, and exceed 60% c whenever their energy is > 64 keV, which it commonly is. Neutron velocity from nuclear reactions ranges from about 6% c for fission to as much as 17% c for fusion.
- Christensen, D. M.; Iddins, C. J.; Sugarman, S. L. (2014). "Ionizing radiation injuries and illnesses". Emergency Medicine Clinics of North America. 32 (1): 245–65. doi:10.1016/j.emc.2013.10.002. PMID 24275177.
- Little, John B.; Kennedy, Ann R.; McGandy, Robert B. (1985). "Effect of Dose Rate on the Induction of Experimental Lung Cancer in Hamsters by α Radiation". Radiation Research. 103 (2): 293–9. Bibcode:1985RadR..103..293L. doi:10.2307/3576584. JSTOR 3576584. PMID 4023181.
- Grellier, James; et al. (2017). "Risk of lung cancer mortality in nuclear workers from internal exposure to alpha particle-emitting radionuclides". Epidemiology. 28 (5): 675–684. doi:10.1097/EDE.0000000000000684. PMC 5540354. PMID 28520643.
- Radford, Edward P.; Hunt, Vilma R. (1964). "Polonium-210: A Volatile Radioelement in Cigarettes". Science. 143 (3603): 247–249. Bibcode:1964Sci...143..247R. doi:10.1126/science.143.3603.247. PMID 14078362. S2CID 23455633.
- Cowell, Alan (24 November 2006). "Radiation Poisoning Killed Ex-Russian Spy". The New York Times. Retrieved 15 September 2011.
- Ernest Rutherford (1899). "Uranium Radiation and the Electrical conduction Produced by it". Philosophical Magazine. 47 (284): 109–163.
- Whittaker, Edmund T. (1989). A history of the theories of aether & electricity. II: The modern theories (Repr ed.). New York: Dover Publ. ISBN 978-0-486-26126-3.
- Ernest Rutherford (1903). "XV. The Magnetic and Electric Deviation of the easily absorbed Rays from Radium". Philosophical Magazine. 6. 5: 177-187.
- Heilbron (1968), pp. 252-254
- Ernest Rutherford (1906). "The Mass and Velocity of the α particles expelled from Radium and Actinium". Philosophical Magazine. Series 6. 12 (70): 348–371. doi:10.1080/14786440609463549.
- Ernest Rutherford; Thomas Royds (1909). "XXI. The nature of the α particle from radioactive substances". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 17 (98): 281–286. doi:10.1080/14786440208636599. ISSN 1941-5982.
- Ernest Rutherford (March 1914). "The Structure of the Atom". Philosophical Magazine. 6. 27: 488–498.
It is obvious from the consideration of the cases of hydrogen and helium, where hydrogen has one electron and helium two, that the number of electrons cannot be exactly half the atomic weight in all cases. This has led to an interesting suggestion by van den Broek that the number of units of charge on the nucleus, and consequently the number of external electrons, may be equal to the number of the elements when arranged in order of increasing atomic weight.
- Ernest Rutherford (11 December 1913). "The Structure of the Atom". Nature. 92 (423).
The original suggestion of van der Broek that the charge on the nucleus is equal to the atomic number and not to half the atomic weight seems to me very promising.
- Agakishiev, H.; et al. (STAR collaboration) (2011). "Observation of the antimatter helium-4 nucleus". Nature. 473 (7347): 353–6. arXiv:1103.3312. Bibcode:2011Natur.473..353S. doi:10.1038/nature10079. PMID 21516103. S2CID 118484566.. See also "Erratum". Nature. 475 (7356): 412. 2011. arXiv:1103.3312. doi:10.1038/nature10264. S2CID 4359058.
- "Antihelium-4: Physicists nab new record for heaviest antimatter". PhysOrg. 24 April 2011. Retrieved 15 November 2011.
- "Americium in Ionization Smoke Detectors". U.S. Environmental Protection Agency. 27 November 2018. Archived from the original on 27 September 2023. Retrieved 30 December 2023.
- Schulman, Fred. "Isotopes and Isotope Thermoelectric Generators." Space Power Systems Advanced Technology Conference. No. N67-10265. 1966.
- "Static Eliminators (1960s and 1980s)". Retrieved 30 December 2023.
- Silson, John E. "Hazards in the use of radioactive static eliminators and their control." American Journal of Public Health and the Nation's Health 40.8 (1950): 943-952.
- Parker, C.; Nilsson, S.; Heinrich, D. (18 July 2013). "Alpha emitter radium-223 and survival in metastatic prostate cancer". New England Journal of Medicine. 369 (3): 213–223. doi:10.1056/NEJMoa1213755. PMID 23863050.
- Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I. (21 August 2007). "Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters". Physics in Medicine and Biology. 52 (16): 5025–42. Bibcode:2007PMB....52.5025A. doi:10.1088/0031-9155/52/16/021. PMID 17671351. S2CID 1585204.
- Tafreshi, Narges K.; Doligalski, Michael L.; Tichacek, Christopher J.; Pandya, Darpan N.; Budzevich, Mikalai M.; El-Haddad, Ghassan; Khushalani, Nikhil I.; Moros, Eduardo G.; McLaughlin, Mark L.; Wadas, Thaddeus J.; Morse, David L. (26 November 2019). "Development of Targeted Alpha Particle Therapy for Solid Tumors". Molecules. 24 (23): 4314. doi:10.3390/molecules24234314. ISSN 1420-3049. PMC 6930656. PMID 31779154.
- May, T. C.; Woods, M. H. (1979). "Alpha-particle-induced soft errors in dynamic memories". IEEE Transactions on Electron Devices. 26 (1): 2–9. Bibcode:1979ITED...26....2M. doi:10.1109/T-ED.1979.19370. S2CID 43748644.
Further reading
- Tipler, Paul; Llewellyn, Ralph (2002). Modern Physics (4th ed.). W. H. Freeman. ISBN 978-0-7167-4345-3.
External links
Media related to Alpha particles at Wikimedia Commons
Alpha particles also called alpha rays or alpha radiation consist of two protons and two neutrons bound together into a particle identical to a helium 4 nucleus They are generally produced in the process of alpha decay but may also be produced in different ways Alpha particles are named after the first letter in the Greek alphabet a The symbol for the alpha particle is a or a2 Because they are identical to helium nuclei they are also sometimes written as He2 or 4 2 He 2 indicating a helium ion with a 2 charge missing its two electrons Once the ion gains electrons from its environment the alpha particle becomes a normal electrically neutral helium atom 4 2 He Alpha particleAlpha decayComposition2 protons 2 neutronsStatisticsBosonicSymbola a2 He2 Mass6 644657 3450 21 10 27 kg 4 001506 179 129 62 Da 3 727379 4118 11 GeV c2 Electric charge 2 eSpin0 ħ Alpha particles have a net spin of zero When produced in standard alpha radioactive decay alpha particles generally have a kinetic energy of about 5 MeV and a velocity in the vicinity of 4 of the speed of light They are a highly ionizing form of particle radiation with low penetration depth stopped by a few centimetres of air or by the skin However so called long range alpha particles from ternary fission are three times as energetic and penetrate three times as far The helium nuclei that form 10 12 of cosmic rays are also usually of much higher energy than those produced by nuclear decay processes and thus may be highly penetrating and able to traverse the human body and also many metres of dense solid shielding depending on their energy To a lesser extent this is also true of very high energy helium nuclei produced by particle accelerators NameThe term alpha particle was coined by Ernest Rutherford in reporting his studies of the properties of uranium radiation The radiation appeared to have two different characters the first he called a displaystyle alpha radiation and the more penetrating one he called b displaystyle beta radiation After five years of additional experimental work Rutherford and Hans Geiger determined that the alpha particle after it has lost its positive charge is a Helium atom 61 Alpha radiation consists of particles equivalent to doubly ionized helium nuclei He2 which can gain electrons from passing through matter This mechanism is the origin of terrestrial helium gas SourcesAlpha decay A physicist observes alpha particles from the decay of a polonium source in a cloud chamberAlpha radiation detected in an isopropanol cloud chamber after injection of an artificial source radon 220 The best known source of alpha particles is alpha decay of heavier mass number of at least 104 atoms When an atom emits an alpha particle in alpha decay the atom s mass number decreases by four due to the loss of the four nucleons in the alpha particle The atomic number of the atom goes down by two as a result of the loss of two protons the atom becomes a new element Examples of this sort of nuclear transmutation by alpha decay are the decay of uranium to thorium and that of radium to radon Alpha particles are commonly emitted by all of the larger radioactive nuclei such as uranium thorium actinium and radium as well as the transuranic elements Unlike other types of decay alpha decay as a process must have a minimum size atomic nucleus that can support it The smallest nuclei that have to date been found to be capable of alpha emission are beryllium 8 and tellurium 104 not counting beta delayed alpha emission of some lighter elements The alpha decay sometimes leaves the parent nucleus in an excited state the emission of a gamma ray then removes the excess energy Mechanism of production in alpha decay In contrast to beta decay the fundamental interactions responsible for alpha decay are a balance between the electromagnetic force and nuclear force Alpha decay results from the Coulomb repulsion between the alpha particle and the rest of the nucleus which both have a positive electric charge but which is kept in check by the nuclear force In classical physics alpha particles do not have enough energy to escape the potential well from the strong force inside the nucleus this well involves escaping the strong force to go up one side of the well which is followed by the electromagnetic force causing a repulsive push off down the other side However the quantum tunnelling effect allows alphas to escape even though they do not have enough energy to overcome the nuclear force This is allowed by the wave nature of matter which allows the alpha particle to spend some of its time in a region so far from the nucleus that the potential from the repulsive electromagnetic force has fully compensated for the attraction of the nuclear force From this point alpha particles can escape Ternary fission Especially energetic alpha particles deriving from a nuclear process are produced in the relatively rare one in a few hundred nuclear fission process of ternary fission In this process three charged particles are produced from the event instead of the normal two with the smallest of the charged particles most probably 90 probability being an alpha particle Such alpha particles are termed long range alphas since at their typical energy of 16 MeV they are at far higher energy than is ever produced by alpha decay Ternary fission happens in both neutron induced fission the nuclear reaction that happens in a nuclear reactor and also when fissionable and fissile actinides nuclides i e heavy atoms capable of fission undergo spontaneous fission as a form of radioactive decay In both induced and spontaneous fission the higher energies available in heavy nuclei result in long range alphas of higher energy than those from alpha decay Accelerators Energetic helium nuclei helium ions may be produced by cyclotrons synchrotrons and other particle accelerators Convention is that they are not normally referred to as alpha particles citation needed Solar core reactions Helium nuclei may participate in nuclear reactions in stars and occasionally and historically these have been referred to as alpha reactions see triple alpha process and alpha process Cosmic rays In addition extremely high energy helium nuclei sometimes referred to as alpha particles make up about 10 to 12 of cosmic rays The mechanisms of cosmic ray production continue to be debated Energy and absorptionExample selection of radioactive nuclides with main emitted alpha particle energies plotted against their atomic number Each nuclide has a distinct alpha spectrum The energy of the alpha particle emitted in alpha decay is mildly dependent on the half life for the emission process with many orders of magnitude differences in half life being associated with energy changes of less than 50 shown by the Geiger Nuttall law The energy of alpha particles emitted varies with higher energy alpha particles being emitted from larger nuclei but most alpha particles have energies of between 3 and 7 MeV mega electron volts corresponding to extremely long and extremely short half lives of alpha emitting nuclides respectively The energies and ratios are often distinct and can be used to identify specific nuclides as in alpha spectrometry With a typical kinetic energy of 5 MeV the speed of emitted alpha particles is 15 000 km s which is 5 of the speed of light This energy is a substantial amount of energy for a single particle but their high mass means alpha particles have a lower speed than any other common type of radiation e g b particles neutrons Because of their charge and large mass alpha particles are easily absorbed by materials and they can travel only a few centimetres in air They can be absorbed by tissue paper or by the outer layers of human skin They typically penetrate skin about 40 micrometres equivalent to a few cells deep Biological effectsDue to the short range of absorption and inability to penetrate the outer layers of skin alpha particles are not in general dangerous to life unless the source is ingested or inhaled Because of this high mass and strong absorption if alpha emitting radionuclides do enter the body upon being inhaled ingested or injected as with the use of Thorotrast for high quality X ray images prior to the 1950s alpha radiation is the most destructive form of ionizing radiation It is the most strongly ionizing and with large enough doses can cause any or all of the symptoms of radiation poisoning It is estimated that chromosome damage from alpha particles is anywhere from 10 to 1000 times greater than that caused by an equivalent amount of gamma or beta radiation with the average being set at 20 times A study of European nuclear workers exposed internally to alpha radiation from plutonium and uranium found that when relative biological effectiveness is considered to be 20 the carcinogenic potential in terms of lung cancer of alpha radiation appears to be consistent with that reported for doses of external gamma radiation i e a given dose of alpha particles inhaled presents the same risk as a 20 times higher dose of gamma radiation The powerful alpha emitter polonium 210 a milligram of 210Po emits as many alpha particles per second as 4 215 grams of 226Ra is suspected of playing a role in lung cancer and bladder cancer related to tobacco smoking 210Po was used to kill Russian dissident and ex FSB officer Alexander V Litvinenko in 2006 History of discovery and useFigure 1 and 2 from Rutherford s 1899 paper on uranium radiation The uranium radiation ionized the air between the electrodes A and B creating a current At first the current steadily dropped as Rutherford placed layer after layer of aluminium foil over the uranium but past 20 micrometers of thickness the current remained more or less the same In 1896 Henri Becquerel discovered that uranium emits an invisible radiation that can leave marks on photographic plates and this mystery radiation wasn t phosphorescence 49 Marie Curie showed that this phenomenon which she called radioactivity was not unique to uranium and a consequence of individual atoms 55 Ernest Rutherford studied uranium radiation and discovered that it could ionize gas particles 2 In 1899 Rutherford discovered that uranium radiation is a mixture of two types of radiation 60 He performed an experiment which involved two electrodes separated by 4 cm of air He placed some uranium on the bottom electrode and the radiation from the uranium ionized the air between the electrodes creating a current Rutherford then placed an aluminium foil 5 micrometers thick over the uranium and noticed that the current dropped a bit indicating that the foil was absorbing some of the uranium s radiation Rutherford placed a few more foils over the uranium and found that for the first four foils the current steadily decreased at a geometric rate However after the fourth layer of foil over the uranium the current didn t drop anymore and remained more or less level for up to twelve layers of foil This result indicated that uranium radiation has two components Rutherford dubbed one component alpha radiation which was fully absorbed by just a few layers of foil and what was left was a second component that could penetrate the foils more easily and he dubbed the latter beta radiation In 1900 Marie Curie noticed that the absorption coefficient of alpha rays seemed to increase the thicker the barrier she placed in their path This suggested that alpha radiation is not a form of light but made of particles that lose kinetic energy as they pass through barriers In 1902 Rutherford found that he could deflect alpha rays with a magnetic field and an electric field showing that alpha radiation is composed of electrically charged particles The direction in which the alpha particles were deflected was the opposite of cathode rays which showed that they are positively charged In 1906 Rutherford made some more precise measurements of the charge to mass ratio of alpha particles Firstly he found that the ratio was more or less the same whether the source was radium or actinium showing that alpha particles are the same regardless of the source Secondly he found the charge to mass ratio of alpha particles to be half that of the hydrogen ion Rutherford proposed three explanations 1 an alpha particle is a hydrogen molecule H2 with a charge of 1 e 2 an alpha particle is an atom of helium with a charge of 2 e 3 an alpha particle is half a helium atom with a charge of 1 e At that time in history scientists knew that hydrogen ions have an atomic weight of 1 and a charge of 1 e and that helium has an atomic weight of 4 Nobody knew exactly how many electrons were in an atom Protons and neutrons had not yet been discovered Rutherford decided the second explanation was the most plausible because it is the simplest and sizeable deposits of helium were commonly found underground next to deposits of radioactive elements His explanation was that as alpha particles are emitted by underground radioactive elements they become trapped in the rock strata and acquire electrons becoming helium atoms Therefore an alpha particle is essentially a helium atom stripped of two electrons In 1909 Ernest Rutherford and Thomas Royds finally proved that alpha particles were indeed helium ions To do this they collected and purified the gas emitted by radium a known alpha particle emitter in a glass tube An electric spark discharge inside the tube produced light Subsequent study of the spectra of this light showed that the gas was helium and thus the alpha particles were indeed the helium ions 61 In 1911 Rutherford used alpha particle scattering data to argue that the positive charge of an atom is concentrated in a tiny nucleus In 1913 Antonius van den Broek suggested that anomalies in the periodic table would be reduced if the nuclear charge in an atom and thus the number of electrons in an atom is equal to its atomic number 228 Therefore a helium atom has two electrons and an alpha particle is essentially a helium nucleus In 1920 Rutherford deduced the existence of the proton as the source of positive charge in the atom In 1932 James Chadwick discovered the neutron Thereafter it was known that an alpha particle is an agglomeration of two protons and two neutrons Anti alpha particleWhile anti matter equivalents for helium 3 have been known since 1970 it took until 2010 for members of the international STAR collaboration using the Relativistic Heavy Ion Collider at the U S Department of Energy s Brookhaven National Laboratory to detect the antimatter partner of the helium 4 nucleus Like the Rutherford scattering experiments the antimatter experiment used gold This time the gold ions moving at nearly the speed of light and colliding head on to produce the antiparticle also dubbed anti alpha particle ApplicationsDevices Some smoke detectors contain a small amount of the alpha emitter americium 241 The alpha particles ionize air within a small gap A small current is passed through that ionized air Smoke particles from fire that enter the air gap reduce the current flow sounding the alarm The isotope is extremely dangerous if inhaled or ingested but the danger is minimal if the source is kept sealed Many municipalities have established programs to collect and dispose of old smoke detectors to keep them out of the general waste stream However the US EPA says they may be thrown away with household garbage Alpha decay can provide a safe power source for radioisotope thermoelectric generators used for space probes Alpha decay is much more easily shielded against than other forms of radioactive decay Plutonium 238 a source of alpha particles requires only 2 5 mm of lead shielding to protect against unwanted radiation Static eliminators typically use polonium 210 an alpha emitter to ionize air allowing the static cling to more rapidly dissipate Cancer treatment Alpha emitting radionuclides are presently being used in three different ways to eradicate cancerous tumors as an infusible radioactive treatment targeted to specific tissues radium 223 as a source of radiation inserted directly into solid tumors radium 224 and as an attachment to an tumor targeting molecule such as an antibody to a tumor associated antigen Radium 223 is an alpha emitter that is naturally attracted to the bone because it is a calcium mimetic Radium 223 as radium 223 dichloride can be infused into a cancer patient s veins after which it migrates to parts of the bone where there is rapid turnover of cells due to the presence of metastasized tumors Once within the bone Ra 223 emits alpha radiation that can destroy tumor cells within a 100 micron distance This approach has been in use since 2013 to treat prostate cancer which has metastasized to the bone Radionuclides infused into the circulation are able to reach sites that are accessible to blood vessels This means however that the interior of a large tumor that is not vascularized i e is not well penetrated by blood vessels may not be effectively eradicated by the radioactivity Radium 224 is a radioactive atom that is utilized as a source of alpha radiation in a cancer treatment device called DaRT diffusing alpha emitters radiation therapy Each radium 224 atom undergoes a decay process producing 6 daughter atoms During this process 4 alpha particles are emitted The range of an alpha particle up to 100 microns is insufficient to cover the width of many tumors However radium 224 s daughter atoms can diffuse up to 2 3 mm in the tissue thus creating a kill region with enough radiation to potentially destroy an entire tumor if the seeds are placed appropriately Radium 224 s half life is short enough at 3 6 days to produce a rapid clinical effect while avoiding the risk of radiation damage due to overexposure At the same time the half life is long enough to allow for handling and shipping the seeds to a cancer treatment center at any location across the globe Targeted alpha therapy for solid tumors involves attaching an alpha particle emitting radionuclide to a tumor targeting molecule such as an antibody that can be delivered by intravenous administration to a cancer patient Alpha radiation and DRAM errorsIn computer technology dynamic random access memory DRAM soft errors were linked to alpha particles in 1978 in Intel s DRAM chips The discovery led to strict control of radioactive elements in the packaging of semiconductor materials and the problem is largely considered to be solved See alsoAlpha nuclide Alpha process Also known as alpha capture or the alpha ladder Beta particle Cosmic rays Helion the nucleus of helium 3 rather than helium 4 List of alpha emitting materials Nuclear physics Particle physics Radioactive isotope Rays b beta rays g Gamma ray d Delta ray e Epsilon radiation Rutherford scatteringReferences 2022 CODATA Value alpha particle mass The NIST Reference on Constants Units and Uncertainty NIST May 2024 Retrieved 18 May 2024 2022 CODATA Value alpha particle mass in u The NIST Reference on Constants Units and Uncertainty NIST May 2024 Retrieved 18 May 2024 2022 CODATA Value alpha particle mass energy equivalent in MeV The NIST Reference on Constants Units and Uncertainty NIST May 2024 Retrieved 18 May 2024 Krane Kenneth S 1988 Introductory Nuclear Physics John Wiley amp Sons pp 246 269 ISBN 978 0 471 80553 3 Bohan Elise Dinwiddie Robert Challoner Jack Stuart Colin Harvey Derek Wragg Sykes Rebecca Chrisp Peter Hubbard Ben Parker Phillip et al Writers February 2016 Big History Foreword by David Christian 1st American ed New York DK p 58 ISBN 978 1 4654 5443 0 OCLC 940282526 Rutherford distinguished and named a and b rays on page 116 of E Rutherford 1899 Uranium radiation and the electrical conduction produced by it Philosophical Magazine Series 5 vol 47 no 284 pages 109 163 Rutherford named g rays on page 177 of E Rutherford 1903 The magnetic and electric deviation of the easily absorbed rays from radium Philosophical Magazine Series 6 vol 5 no 26 pages 177 187 Rutherford Ernest Geiger Hans 2014 The Charge and Nature of the a Particle The Collected Papers of Lord Rutherford of Nelson Routledge pp 109 120 Rutherford E Geiger Hans 1908 The Charge and Nature of the a Particle Proceedings of the Royal Society of London Series A Containing Papers of a Mathematical and Physical Character 81 546 162 173 Bibcode 1908RSPSA 81 162R doi 10 1098 rspa 1908 0066 ISSN 0950 1207 JSTOR 92981 Pais Abraham 2002 Inward bound of matter and forces in the physical world Reprint ed Oxford Clarendon Press u a ISBN 978 0 19 851997 3 Morrison P Pine J 1955 Radiogenic Origin of the Helium Isotopes in Rock Annals of the New York Academy of Sciences 62 3 71 92 Bibcode 1955NYASA 62 71M doi 10 1111 j 1749 6632 1955 tb35366 x ISSN 0077 8923 Firestone Richard B Baglin Coral M 1999 Table of isotopes 8th ed New York Wiley ISBN 0 471 35633 6 OCLC 43118182 N B Since gamma rays are electromagnetic light they move at the speed of light c Beta particles often move at a large fraction of c and exceed 60 c whenever their energy is gt 64 keV which it commonly is Neutron velocity from nuclear reactions ranges from about 6 c for fission to as much as 17 c for fusion Christensen D M Iddins C J Sugarman S L 2014 Ionizing radiation injuries and illnesses Emergency Medicine Clinics of North America 32 1 245 65 doi 10 1016 j emc 2013 10 002 PMID 24275177 Little John B Kennedy Ann R McGandy Robert B 1985 Effect of Dose Rate on the Induction of Experimental Lung Cancer in Hamsters by a Radiation Radiation Research 103 2 293 9 Bibcode 1985RadR 103 293L doi 10 2307 3576584 JSTOR 3576584 PMID 4023181 Grellier James et al 2017 Risk of lung cancer mortality in nuclear workers from internal exposure to alpha particle emitting radionuclides Epidemiology 28 5 675 684 doi 10 1097 EDE 0000000000000684 PMC 5540354 PMID 28520643 Radford Edward P Hunt Vilma R 1964 Polonium 210 A Volatile Radioelement in Cigarettes Science 143 3603 247 249 Bibcode 1964Sci 143 247R doi 10 1126 science 143 3603 247 PMID 14078362 S2CID 23455633 Cowell Alan 24 November 2006 Radiation Poisoning Killed Ex Russian Spy The New York Times Retrieved 15 September 2011 Ernest Rutherford 1899 Uranium Radiation and the Electrical conduction Produced by it Philosophical Magazine 47 284 109 163 Whittaker Edmund T 1989 A history of the theories of aether amp electricity II The modern theories Repr ed New York Dover Publ ISBN 978 0 486 26126 3 Ernest Rutherford 1903 XV The Magnetic and Electric Deviation of the easily absorbed Rays from Radium Philosophical Magazine 6 5 177 187 Heilbron 1968 pp 252 254 Ernest Rutherford 1906 The Mass and Velocity of the a particles expelled from Radium and Actinium Philosophical Magazine Series 6 12 70 348 371 doi 10 1080 14786440609463549 Ernest Rutherford Thomas Royds 1909 XXI The nature of the a particle from radioactive substances The London Edinburgh and Dublin Philosophical Magazine and Journal of Science 17 98 281 286 doi 10 1080 14786440208636599 ISSN 1941 5982 Ernest Rutherford March 1914 The Structure of the Atom Philosophical Magazine 6 27 488 498 It is obvious from the consideration of the cases of hydrogen and helium where hydrogen has one electron and helium two that the number of electrons cannot be exactly half the atomic weight in all cases This has led to an interesting suggestion by van den Broek that the number of units of charge on the nucleus and consequently the number of external electrons may be equal to the number of the elements when arranged in order of increasing atomic weight Ernest Rutherford 11 December 1913 The Structure of the Atom Nature 92 423 The original suggestion of van der Broek that the charge on the nucleus is equal to the atomic number and not to half the atomic weight seems to me very promising Agakishiev H et al STAR collaboration 2011 Observation of the antimatter helium 4 nucleus Nature 473 7347 353 6 arXiv 1103 3312 Bibcode 2011Natur 473 353S doi 10 1038 nature10079 PMID 21516103 S2CID 118484566 See also Erratum Nature 475 7356 412 2011 arXiv 1103 3312 doi 10 1038 nature10264 S2CID 4359058 Antihelium 4 Physicists nab new record for heaviest antimatter PhysOrg 24 April 2011 Retrieved 15 November 2011 Americium in Ionization Smoke Detectors U S Environmental Protection Agency 27 November 2018 Archived from the original on 27 September 2023 Retrieved 30 December 2023 Schulman Fred Isotopes and Isotope Thermoelectric Generators Space Power Systems Advanced Technology Conference No N67 10265 1966 Static Eliminators 1960s and 1980s Retrieved 30 December 2023 Silson John E Hazards in the use of radioactive static eliminators and their control American Journal of Public Health and the Nation s Health 40 8 1950 943 952 Parker C Nilsson S Heinrich D 18 July 2013 Alpha emitter radium 223 and survival in metastatic prostate cancer New England Journal of Medicine 369 3 213 223 doi 10 1056 NEJMoa1213755 PMID 23863050 Arazi L Cooks T Schmidt M Keisari Y Kelson I 21 August 2007 Treatment of solid tumors by interstitial release of recoiling short lived alpha emitters Physics in Medicine and Biology 52 16 5025 42 Bibcode 2007PMB 52 5025A doi 10 1088 0031 9155 52 16 021 PMID 17671351 S2CID 1585204 Tafreshi Narges K Doligalski Michael L Tichacek Christopher J Pandya Darpan N Budzevich Mikalai M El Haddad Ghassan Khushalani Nikhil I Moros Eduardo G McLaughlin Mark L Wadas Thaddeus J Morse David L 26 November 2019 Development of Targeted Alpha Particle Therapy for Solid Tumors Molecules 24 23 4314 doi 10 3390 molecules24234314 ISSN 1420 3049 PMC 6930656 PMID 31779154 May T C Woods M H 1979 Alpha particle induced soft errors in dynamic memories IEEE Transactions on Electron Devices 26 1 2 9 Bibcode 1979ITED 26 2M doi 10 1109 T ED 1979 19370 S2CID 43748644 Further readingTipler Paul Llewellyn Ralph 2002 Modern Physics 4th ed W H Freeman ISBN 978 0 7167 4345 3 External linksMedia related to Alpha particles at Wikimedia Commons