
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection (for example at a mirror) the angle at which the wave is incident on the surface equals the angle at which it is reflected.

In acoustics, reflection causes echoes and is used in sonar. In geology, it is important in the study of seismic waves. Reflection is observed with surface waves in bodies of water. Reflection is observed with many types of electromagnetic wave, besides visible light. Reflection of VHF and higher frequencies is important for radio transmission and for radar. Even hard X-rays and gamma rays can be reflected at shallow angles with special "grazing" mirrors.
Reflection of light
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface. In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.
A mirror provides the most common model for specular light reflection, and typically consists of a glass sheet with a metallic coating where the significant reflection occurs. Reflection is enhanced in metals by suppression of wave propagation beyond their skin depths. Reflection also occurs at the surface of transparent media, such as water or glass.
In the diagram, a light ray PO strikes a vertical mirror at point O, and the reflected ray is OQ. By projecting an imaginary line through point O perpendicular to the mirror, known as the normal, we can measure the angle of incidence, θi and the angle of reflection, θr. The law of reflection states that θi = θr, or in other words, the angle of incidence equals the angle of reflection.
In fact, reflection of light may occur whenever light travels from a medium of a given refractive index into a medium with a different refractive index. In the most general case, a certain fraction of the light is reflected from the interface, and the remainder is refracted. Solving Maxwell's equations for a light ray striking a boundary allows the derivation of the Fresnel equations, which can be used to predict how much of the light is reflected, and how much is refracted in a given situation. This is analogous to the way impedance mismatch in an electric circuit causes reflection of signals. Total internal reflection of light from a denser medium occurs if the angle of incidence is greater than the critical angle.
Total internal reflection is used as a means of focusing waves that cannot effectively be reflected by common means. X-ray telescopes are constructed by creating a converging "tunnel" for the waves. As the waves interact at low angle with the surface of this tunnel they are reflected toward the focus point (or toward another interaction with the tunnel surface, eventually being directed to the detector at the focus). A conventional reflector would be useless as the X-rays would simply pass through the intended reflector.
When light reflects off a material with higher refractive index than the medium in which is traveling, it undergoes a 180° phase shift. In contrast, when light reflects off a material with lower refractive index the reflected light is in phase with the incident light. This is an important principle in the field of thin-film optics.
Specular reflection forms images. Reflection from a flat surface forms a mirror image, which appears to be reversed from left to right because we compare the image we see to what we would see if we were rotated into the position of the image. Specular reflection at a curved surface forms an image which may be magnified or demagnified; curved mirrors have optical power. Such mirrors may have surfaces that are spherical or parabolic.
Laws of reflection
If the reflecting surface is very smooth, the reflection of light that occurs is called specular or regular reflection. The laws of reflection are as follows:
- The incident ray, the reflected ray and the normal to the reflection surface at the point of the incidence lie in the same plane.
- The angle which the incident ray makes with the normal is equal to the angle which the reflected ray makes to the same normal.
- The reflected ray and the incident ray are on the opposite sides of the normal.
These three laws can all be derived from the Fresnel equations.
Mechanism
In classical electrodynamics, light is considered as an electromagnetic wave, which is described by Maxwell's equations. Light waves incident on a material induce small oscillations of polarisation in the individual atoms (or oscillation of electrons, in metals), causing each particle to radiate a small secondary wave in all directions, like a dipole antenna. All these waves add up to give specular reflection and refraction, according to the Huygens–Fresnel principle.
In the case of dielectrics such as glass, the electric field of the light acts on the electrons in the material, and the moving electrons generate fields and become new radiators. The refracted light in the glass is the combination of the forward radiation of the electrons and the incident light. The reflected light is the combination of the backward radiation of all of the electrons.
In metals, electrons with no binding energy are called free electrons. When these electrons oscillate with the incident light, the phase difference between their radiation field and the incident field is π (180°), so the forward radiation cancels the incident light, and backward radiation is just the reflected light.
Light–matter interaction in terms of photons is a topic of quantum electrodynamics, and is described in detail by Richard Feynman in his popular book QED: The Strange Theory of Light and Matter.
Diffuse reflection
When light strikes the surface of a (non-metallic) material it bounces off in all directions due to multiple reflections by the microscopic irregularities inside the material (e.g. the grain boundaries of a polycrystalline material, or the cell or fiber boundaries of an organic material) and by its surface, if it is rough. Thus, an 'image' is not formed. This is called diffuse reflection. The exact form of the reflection depends on the structure of the material. One common model for diffuse reflection is Lambertian reflectance, in which the light is reflected with equal luminance (in photometry) or radiance (in radiometry) in all directions, as defined by Lambert's cosine law.
The light sent to our eyes by most of the objects we see is due to diffuse reflection from their surface, so that this is our primary mechanism of physical observation.
Retroreflection
Some surfaces exhibit retroreflection. The structure of these surfaces is such that light is returned in the direction from which it came.
When flying over clouds illuminated by sunlight the region seen around the aircraft's shadow will appear brighter, and a similar effect may be seen from dew on grass. This partial retro-reflection is created by the refractive properties of the curved droplet's surface and reflective properties at the backside of the droplet.
Some animals' retinas act as retroreflectors (see tapetum lucidum for more detail), as this effectively improves the animals' night vision. Since the lenses of their eyes modify reciprocally the paths of the incoming and outgoing light the effect is that the eyes act as a strong retroreflector, sometimes seen at night when walking in wildlands with a flashlight.
A simple retroreflector can be made by placing three ordinary mirrors mutually perpendicular to one another (a corner reflector). The image produced is the inverse of one produced by a single mirror. A surface can be made partially retroreflective by depositing a layer of tiny refractive spheres on it or by creating small pyramid like structures. In both cases internal reflection causes the light to be reflected back to where it originated. This is used to make traffic signs and automobile license plates reflect light mostly back in the direction from which it came. In this application perfect retroreflection is not desired, since the light would then be directed back into the headlights of an oncoming car rather than to the driver's eyes.
Multiple reflections
When light reflects off a mirror, one image appears. Two mirrors placed exactly face to face give the appearance of an infinite number of images along a straight line. The multiple images seen between two mirrors that sit at an angle to each other lie over a circle. The center of that circle is located at the imaginary intersection of the mirrors. A square of four mirrors placed face to face give the appearance of an infinite number of images arranged in a plane. The multiple images seen between four mirrors assembling a pyramid, in which each pair of mirrors sits an angle to each other, lie over a sphere. If the base of the pyramid is rectangle shaped, the images spread over a section of a torus.
Note that these are theoretical ideals, requiring perfect alignment of perfectly smooth, perfectly flat perfect reflectors that absorb none of the light. In practice, these situations can only be approached but not achieved because the effects of any surface imperfections in the reflectors propagate and magnify, absorption gradually extinguishes the image, and any observing equipment (biological or technological) will interfere.
Complex conjugate reflection
In this process (which is also known as phase conjugation), light bounces exactly back in the direction from which it came due to a nonlinear optical process. Not only the direction of the light is reversed, but the actual wavefronts are reversed as well. A conjugate reflector can be used to remove aberrations from a beam by reflecting it and then passing the reflection through the aberrating optics a second time. If one were to look into a complex conjugating mirror, it would be black because only the photons which left the pupil would reach the pupil.
Other types of reflection
Neutron reflection
Materials that reflect neutrons, for example beryllium, are used in nuclear reactors and nuclear weapons. In the physical and biological sciences, the reflection of neutrons off atoms within a material is commonly used to determine the material's internal structure.
Sound reflection
When a longitudinal sound wave strikes a flat surface, sound is reflected in a coherent manner provided that the dimension of the reflective surface is large compared to the wavelength of the sound. Note that audible sound has a very wide frequency range (from 20 to about 17000 Hz), and thus a very wide range of wavelengths (from about 20 mm to 17 m). As a result, the overall nature of the reflection varies according to the texture and structure of the surface. For example, porous materials will absorb some energy, and rough materials (where rough is relative to the wavelength) tend to reflect in many directions—to scatter the energy, rather than to reflect it coherently. This leads into the field of architectural acoustics, because the nature of these reflections is critical to the auditory feel of a space. In the theory of exterior noise mitigation, reflective surface size mildly detracts from the concept of a noise barrier by reflecting some of the sound into the opposite direction. Sound reflection can affect the acoustic space.
Seismic reflection
Seismic waves produced by earthquakes or other sources (such as explosions) may be reflected by layers within the Earth. Study of the deep reflections of waves generated by earthquakes has allowed seismologists to determine the layered structure of the Earth. Shallower reflections are used in reflection seismology to study the Earth's crust generally, and in particular to prospect for petroleum and natural gas deposits.
Time reflections
Scientists have speculated that there could be time reflections. Scientists from the Advanced Science Research Center at the CUNY Graduate Center report that they observed time reflections by sending broadband signals into a strip of metamaterial filled with electronic switches. The "time reflections" in electromagnetic waves are discussed in a 2023 paper published in the journal Nature Physics.
See also
- Anti-reflective coating
- Diffraction
- Echo satellite
- Huygens–Fresnel principle
- List of reflected light sources
- Negative refraction
- Ocean surface wave
- Reflection coefficient
- Reflectivity
- Refraction
- Ripple tank
- Signal reflection
- Snell's law
- Sun glitter
- Two-ray ground-reflection model
References
- Lekner, John (1987). Theory of Reflection, of Electromagnetic and Particle Waves. Springer. ISBN 9789024734184.
- Mandelstam, L.I. (1926). "Light Scattering by Inhomogeneous Media". Zh. Russ. Fiz-Khim. Ova. 58: 381.
- M. Iona (1982). "Virtual mirrors". Physics Teacher. 20 (5): 278. Bibcode:1982PhTea..20..278G. doi:10.1119/1.2341067.
- I. Moreno (2010). "Output irradiance of tapered lightpipes" (PDF). JOSA A. 27 (9): 1985–1993. Bibcode:2010JOSAA..27.1985M. doi:10.1364/JOSAA.27.001985. PMID 20808406. S2CID 5844431. Archived from the original (PDF) on 2012-03-31. Retrieved 2011-09-03.
- Orf, Darren (2025-03-02). "Time Reflections Are Real: What Are They, and How Do They Work?". Popular Mechanics. Retrieved 2025-03-03.
- Moussa, Hady; Xu, Gengyu; Yin, Shixiong; Galiffi, Emanuele; Ra’di, Younes; Alù, Andrea (2023-03-13). "Observation of temporal reflection and broadband frequency translation at photonic time interfaces". Nature Physics. 19 (6). Springer Science and Business Media LLC: 863–868. doi:10.1038/s41567-023-01975-y. ISSN 1745-2473. Retrieved 2025-03-03.
External links
- Acoustic reflection Archived 2019-01-04 at the Wayback Machine
- Animations demonstrating optical reflection by QED
- Simulation on Laws of Reflection of Sound By Amrita University
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated Common examples include the reflection of light sound and water waves The law of reflection says that for specular reflection for example at a mirror the angle at which the wave is incident on the surface equals the angle at which it is reflected The reflection of Mount Hood in Mirror Lake In acoustics reflection causes echoes and is used in sonar In geology it is important in the study of seismic waves Reflection is observed with surface waves in bodies of water Reflection is observed with many types of electromagnetic wave besides visible light Reflection of VHF and higher frequencies is important for radio transmission and for radar Even hard X rays and gamma rays can be reflected at shallow angles with special grazing mirrors Reflection of lightReflection of light is either specular mirror like or diffuse retaining the energy but losing the image depending on the nature of the interface In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates but the relative phase between s and p TE and TM polarizations is fixed by the properties of the media and of the interface between them A mirror provides the most common model for specular light reflection and typically consists of a glass sheet with a metallic coating where the significant reflection occurs Reflection is enhanced in metals by suppression of wave propagation beyond their skin depths Reflection also occurs at the surface of transparent media such as water or glass Diagram of specular reflection In the diagram a light ray PO strikes a vertical mirror at point O and the reflected ray is OQ By projecting an imaginary line through point O perpendicular to the mirror known as the normal we can measure the angle of incidence 8i and the angle of reflection 8r The law of reflection states that 8i 8r or in other words the angle of incidence equals the angle of reflection In fact reflection of light may occur whenever light travels from a medium of a given refractive index into a medium with a different refractive index In the most general case a certain fraction of the light is reflected from the interface and the remainder is refracted Solving Maxwell s equations for a light ray striking a boundary allows the derivation of the Fresnel equations which can be used to predict how much of the light is reflected and how much is refracted in a given situation This is analogous to the way impedance mismatch in an electric circuit causes reflection of signals Total internal reflection of light from a denser medium occurs if the angle of incidence is greater than the critical angle Total internal reflection is used as a means of focusing waves that cannot effectively be reflected by common means X ray telescopes are constructed by creating a converging tunnel for the waves As the waves interact at low angle with the surface of this tunnel they are reflected toward the focus point or toward another interaction with the tunnel surface eventually being directed to the detector at the focus A conventional reflector would be useless as the X rays would simply pass through the intended reflector When light reflects off a material with higher refractive index than the medium in which is traveling it undergoes a 180 phase shift In contrast when light reflects off a material with lower refractive index the reflected light is in phase with the incident light This is an important principle in the field of thin film optics Specular reflection forms images Reflection from a flat surface forms a mirror image which appears to be reversed from left to right because we compare the image we see to what we would see if we were rotated into the position of the image Specular reflection at a curved surface forms an image which may be magnified or demagnified curved mirrors have optical power Such mirrors may have surfaces that are spherical or parabolic Refraction of light at the interface between two mediaLaws of reflection An example of the law of reflection If the reflecting surface is very smooth the reflection of light that occurs is called specular or regular reflection The laws of reflection are as follows The incident ray the reflected ray and the normal to the reflection surface at the point of the incidence lie in the same plane The angle which the incident ray makes with the normal is equal to the angle which the reflected ray makes to the same normal The reflected ray and the incident ray are on the opposite sides of the normal These three laws can all be derived from the Fresnel equations Mechanism source source source source source 2D simulation reflection of a quantum particle White blur represents the probability distribution of finding a particle in a given place if measured In classical electrodynamics light is considered as an electromagnetic wave which is described by Maxwell s equations Light waves incident on a material induce small oscillations of polarisation in the individual atoms or oscillation of electrons in metals causing each particle to radiate a small secondary wave in all directions like a dipole antenna All these waves add up to give specular reflection and refraction according to the Huygens Fresnel principle In the case of dielectrics such as glass the electric field of the light acts on the electrons in the material and the moving electrons generate fields and become new radiators The refracted light in the glass is the combination of the forward radiation of the electrons and the incident light The reflected light is the combination of the backward radiation of all of the electrons In metals electrons with no binding energy are called free electrons When these electrons oscillate with the incident light the phase difference between their radiation field and the incident field is p 180 so the forward radiation cancels the incident light and backward radiation is just the reflected light Light matter interaction in terms of photons is a topic of quantum electrodynamics and is described in detail by Richard Feynman in his popular book QED The Strange Theory of Light and Matter Diffuse reflection General scattering mechanism which gives diffuse reflection by a solid surface When light strikes the surface of a non metallic material it bounces off in all directions due to multiple reflections by the microscopic irregularities inside the material e g the grain boundaries of a polycrystalline material or the cell or fiber boundaries of an organic material and by its surface if it is rough Thus an image is not formed This is called diffuse reflection The exact form of the reflection depends on the structure of the material One common model for diffuse reflection is Lambertian reflectance in which the light is reflected with equal luminance in photometry or radiance in radiometry in all directions as defined by Lambert s cosine law The light sent to our eyes by most of the objects we see is due to diffuse reflection from their surface so that this is our primary mechanism of physical observation Retroreflection A two dimensional illustration of how a corner reflector works Some surfaces exhibit retroreflection The structure of these surfaces is such that light is returned in the direction from which it came When flying over clouds illuminated by sunlight the region seen around the aircraft s shadow will appear brighter and a similar effect may be seen from dew on grass This partial retro reflection is created by the refractive properties of the curved droplet s surface and reflective properties at the backside of the droplet Some animals retinas act as retroreflectors see tapetum lucidum for more detail as this effectively improves the animals night vision Since the lenses of their eyes modify reciprocally the paths of the incoming and outgoing light the effect is that the eyes act as a strong retroreflector sometimes seen at night when walking in wildlands with a flashlight A simple retroreflector can be made by placing three ordinary mirrors mutually perpendicular to one another a corner reflector The image produced is the inverse of one produced by a single mirror A surface can be made partially retroreflective by depositing a layer of tiny refractive spheres on it or by creating small pyramid like structures In both cases internal reflection causes the light to be reflected back to where it originated This is used to make traffic signs and automobile license plates reflect light mostly back in the direction from which it came In this application perfect retroreflection is not desired since the light would then be directed back into the headlights of an oncoming car rather than to the driver s eyes Multiple reflections Multiple reflections in two plane mirrors at a 60 angle When light reflects off a mirror one image appears Two mirrors placed exactly face to face give the appearance of an infinite number of images along a straight line The multiple images seen between two mirrors that sit at an angle to each other lie over a circle The center of that circle is located at the imaginary intersection of the mirrors A square of four mirrors placed face to face give the appearance of an infinite number of images arranged in a plane The multiple images seen between four mirrors assembling a pyramid in which each pair of mirrors sits an angle to each other lie over a sphere If the base of the pyramid is rectangle shaped the images spread over a section of a torus Note that these are theoretical ideals requiring perfect alignment of perfectly smooth perfectly flat perfect reflectors that absorb none of the light In practice these situations can only be approached but not achieved because the effects of any surface imperfections in the reflectors propagate and magnify absorption gradually extinguishes the image and any observing equipment biological or technological will interfere Complex conjugate reflection In this process which is also known as phase conjugation light bounces exactly back in the direction from which it came due to a nonlinear optical process Not only the direction of the light is reversed but the actual wavefronts are reversed as well A conjugate reflector can be used to remove aberrations from a beam by reflecting it and then passing the reflection through the aberrating optics a second time If one were to look into a complex conjugating mirror it would be black because only the photons which left the pupil would reach the pupil Other types of reflectionNeutron reflection Materials that reflect neutrons for example beryllium are used in nuclear reactors and nuclear weapons In the physical and biological sciences the reflection of neutrons off atoms within a material is commonly used to determine the material s internal structure Sound reflection Sound diffusion panel for high frequencies When a longitudinal sound wave strikes a flat surface sound is reflected in a coherent manner provided that the dimension of the reflective surface is large compared to the wavelength of the sound Note that audible sound has a very wide frequency range from 20 to about 17000 Hz and thus a very wide range of wavelengths from about 20 mm to 17 m As a result the overall nature of the reflection varies according to the texture and structure of the surface For example porous materials will absorb some energy and rough materials where rough is relative to the wavelength tend to reflect in many directions to scatter the energy rather than to reflect it coherently This leads into the field of architectural acoustics because the nature of these reflections is critical to the auditory feel of a space In the theory of exterior noise mitigation reflective surface size mildly detracts from the concept of a noise barrier by reflecting some of the sound into the opposite direction Sound reflection can affect the acoustic space Seismic reflection Seismic waves produced by earthquakes or other sources such as explosions may be reflected by layers within the Earth Study of the deep reflections of waves generated by earthquakes has allowed seismologists to determine the layered structure of the Earth Shallower reflections are used in reflection seismology to study the Earth s crust generally and in particular to prospect for petroleum and natural gas deposits Time reflections Scientists have speculated that there could be time reflections Scientists from the Advanced Science Research Center at the CUNY Graduate Center report that they observed time reflections by sending broadband signals into a strip of metamaterial filled with electronic switches The time reflections in electromagnetic waves are discussed in a 2023 paper published in the journal Nature Physics See alsoAnti reflective coating Diffraction Echo satellite Huygens Fresnel principle List of reflected light sources Negative refraction Ocean surface wave Reflection coefficient Reflectivity Refraction Ripple tank Signal reflection Snell s law Sun glitter Two ray ground reflection modelReferencesLekner John 1987 Theory of Reflection of Electromagnetic and Particle Waves Springer ISBN 9789024734184 Mandelstam L I 1926 Light Scattering by Inhomogeneous Media Zh Russ Fiz Khim Ova 58 381 M Iona 1982 Virtual mirrors Physics Teacher 20 5 278 Bibcode 1982PhTea 20 278G doi 10 1119 1 2341067 I Moreno 2010 Output irradiance of tapered lightpipes PDF JOSA A 27 9 1985 1993 Bibcode 2010JOSAA 27 1985M doi 10 1364 JOSAA 27 001985 PMID 20808406 S2CID 5844431 Archived from the original PDF on 2012 03 31 Retrieved 2011 09 03 Orf Darren 2025 03 02 Time Reflections Are Real What Are They and How Do They Work Popular Mechanics Retrieved 2025 03 03 Moussa Hady Xu Gengyu Yin Shixiong Galiffi Emanuele Ra di Younes Alu Andrea 2023 03 13 Observation of temporal reflection and broadband frequency translation at photonic time interfaces Nature Physics 19 6 Springer Science and Business Media LLC 863 868 doi 10 1038 s41567 023 01975 y ISSN 1745 2473 Retrieved 2025 03 03 External linksWikimedia Commons has media related to Reflection Wikimedia Commons has media related to Reflections Acoustic reflection Archived 2019 01 04 at the Wayback Machine Animations demonstrating optical reflection by QED Simulation on Laws of Reflection of Sound By Amrita University