![Agronomy](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi9kL2Q5L1Jlc2VhcmNoLV9hbHRlcm5hdGl2ZV9jcm9wcy5qcGcvMTYwMHB4LVJlc2VhcmNoLV9hbHRlcm5hdGl2ZV9jcm9wcy5qcGc=.jpg )
Agronomy is the science and technology of producing and using plants by agriculture for food, fuel, fiber, chemicals, recreation, or land conservation. Agronomy has come to include research of plant genetics, plant physiology, meteorology, and soil science. It is the application of a combination of sciences such as biology, chemistry, economics, ecology, earth science, and genetics. Professionals of agronomy are termed agronomists.
History
Early humans practiced hunter-gathering, but by around 10,000 BCE, they began to domesticate plants like wheat, barley and rice. This laid the foundation for agriculture.
Ancient civilizations such as the Sumerians, Egyptians and Romans made significant advances in farming. They introduced irrigation systems, crop rotation, and early forms of fertilization.
During this period, agricultural knowledge remained relatively static in Europe, though Islamic scholars made advances in agronomy. Ibn al-'Awwam, a 12th-century Andalusian agronomist, wrote the Kitāb al-Filāḥa, a comprehensive guide on farming practices, crop management and soil conservation.
The Renaissance saw a renewed interest in scientific exploration, including agriculture. Leonardo da Vinci and other scholars contributed to early agronomic theory, studying plant growth, crop rotation, and animal husbandry.
Agronomy emerged as a distinct scientific discipline in the 1800s, driven by advancements in chemistry and biology. The development of scientific methods led to the study of plant physiology, soil chemistry, and the role of fertilizers in crop production. Justus von Liebig, a German chemist, made groundbreaking discoveries about plant nutrition, establishing that plants require specific minerals, such as nitrogen, phosphorus and potassium, for growth.
In the early 20th century, industrialization began transforming agriculture. Mechanization, the development of synthetic fertilizers and pesticides, and improved crop varieties, led to higher agricultural productivity. The Green Revolution (1940s-1960s), led by scientists like Norman Borlaug, introduced high-yield crop varieties and modern farming techniques, helping to avert hunger in many parts of the world.
By the late same century, concerns over the environmental impact of industrial agriculture, such as soil degradation, water pollution, and biodiversity loss, led to a push toward sustainable agriculture. Today agronomy continues to adapt to challenges of climate change, global food security and the need to balance productivity with environmental stewardship.
Plant breeding
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWtMMlE1TDFKbGMyVmhjbU5vTFY5aGJIUmxjbTVoZEdsMlpWOWpjbTl3Y3k1cWNHY3ZNakl3Y0hndFVtVnpaV0Z5WTJndFgyRnNkR1Z5Ym1GMGFYWmxYMk55YjNCekxtcHdadz09LmpwZw==.jpg)
This topic of agronomy involves selective breeding of plants to produce the best crops for various conditions. Plant breeding has increased crop yields and has improved the nutritional value of numerous crops, including corn, soybeans, and wheat. It has also resulted in the development of new types of plants. For example, a hybrid grain named triticale was produced by crossbreeding rye and wheat. Triticale contains more usable protein than does either rye or wheat. Agronomy has also been instrumental for fruit and vegetable production research. Furthermore, the application of plant breeding for turfgrass development has resulted in a reduction in the demand for fertilizer and water inputs (requirements), as well as turf-types with higher disease resistance.
Biotechnology
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODFMelUzTDFKbGMyVmhjbU5vTFcxaGNIQnBibWRmY0d4aGJuUmZaMlZ1YjIxbGN5NXFjR2N2TWpJd2NIZ3RVbVZ6WldGeVkyZ3RiV0Z3Y0dsdVoxOXdiR0Z1ZEY5blpXNXZiV1Z6TG1wd1p3PT0uanBn.jpg)
Agronomists use biotechnology to extend and expedite the development of desired characteristics. Biotechnology is often a laboratory activity requiring field testing of new crop varieties that are developed.
In addition to increasing crop yields agronomic biotechnology is being applied increasingly for novel uses other than food. For example, oilseed is at present used mainly for margarine and other food oils, but it can be modified to produce fatty acids for detergents, substitute fuels and petrochemicals.
Soil science
Agronomists study sustainable ways to make soils more productive and profitable. They classify soils and analyze them to determine whether they contain nutrients vital for plant growth. Common macronutrients analyzed include compounds of nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. Soil is also assessed for several micronutrients, like zinc and boron. The percentage of organic matter, soil pH, and nutrient holding capacity (cation exchange capacity) are tested in a regional laboratory. Agronomists will interpret these laboratory reports and make recommendations to modify soil nutrients for optimal plant growth.
Soil conservation
Additionally, agronomists develop methods to preserve soil and decrease the effects of [erosion] by wind and water. For example, a technique known as contour plowing may be used to prevent soil erosion and conserve rainfall. Researchers of agronomy also seek ways to use the soil more effectively for solving other problems. Such problems include the disposal of human and animal manure, water pollution, and pesticide accumulation in the soil, as well as preserving the soil for future generations such as the burning of paddocks after crop production. Pasture management techniques include no-till farming, planting of soil-binding grasses along contours on steep slopes, and using contour drains of depths as much as 1 metre.
Agroecology
Agroecology is the management of agricultural systems with an emphasis on ecological and environmental applications. This topic is associated closely with work for sustainable agriculture, organic farming, and alternative food systems and the development of alternative cropping systems.
Theoretical modeling
Theoretical production ecology is the quantitative study of the growth of crops. The plant is treated as a kind of biological factory, which processes light, carbon dioxide, water, and nutrients into harvestable products. The main parameters are temperature, sunlight, standing crop biomass, plant production distribution, and nutrient and water supply.[citation needed]
See also
- Agricultural engineering
- Agricultural policy
- Agroecology
- Agrophysics
- Crop farming
- Food systems
- Horticulture
- Green Revolution
- Vegetable farming
References
- Georgetown International Environmental Law Review
- Hoeft, Robert G. (2000). Modern Corn and Soybean Production. MCSP Publications. pp. 107 to 171. ASIN B0006RLD8U.
- Arya, R. L.; Arya, S.; Arya, Renu; Kumar, J. (2015-01-01). Fundamentals of Agriculture (ICAR-NET, JRF, SRF, CSIR-NET, UPSC & IFS). Scientific Publishers. ISBN 978-93-86102-36-2.
- "Iowa State University: Undergraduate Program - Agroecology". Archived from the original on 7 October 2008.
- Rosenberg Agronom
Bibliography
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODVMems1TDFkcGEzUnBiMjVoY25rdGJHOW5ieTFsYmkxMk1pNXpkbWN2TkRCd2VDMVhhV3QwYVc5dVlYSjVMV3h2WjI4dFpXNHRkakl1YzNabkxuQnVadz09LnBuZw==.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2Wlc0dmRHaDFiV0l2TkM4MFlTOURiMjF0YjI1ekxXeHZaMjh1YzNabkx6TXdjSGd0UTI5dGJXOXVjeTFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlpoTDFkcGEybHhkVzkwWlMxc2IyZHZMbk4yWnk4ek5IQjRMVmRwYTJseGRXOTBaUzFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHdMekJpTDFkcGEybDJaWEp6YVhSNVgyeHZaMjlmTWpBeE55NXpkbWN2TkRCd2VDMVhhV3RwZG1WeWMybDBlVjlzYjJkdlh6SXdNVGN1YzNabkxuQnVadz09LnBuZw==.png)
- The American Society of Agronomy (ASA)
- Crop Science Society of America (CSSA)
- Soil Science Society of America (SSSA)
- European Society for Agronomy
- The National Agricultural Library (NAL) – Comprehensive agricultural library.
- Information System for Agriculture and Food Research
Agronomy is the science and technology of producing and using plants by agriculture for food fuel fiber chemicals recreation or land conservation Agronomy has come to include research of plant genetics plant physiology meteorology and soil science It is the application of a combination of sciences such as biology chemistry economics ecology earth science and genetics Professionals of agronomy are termed agronomists HistoryEarly humans practiced hunter gathering but by around 10 000 BCE they began to domesticate plants like wheat barley and rice This laid the foundation for agriculture Ancient civilizations such as the Sumerians Egyptians and Romans made significant advances in farming They introduced irrigation systems crop rotation and early forms of fertilization During this period agricultural knowledge remained relatively static in Europe though Islamic scholars made advances in agronomy Ibn al Awwam a 12th century Andalusian agronomist wrote the Kitab al Filaḥa a comprehensive guide on farming practices crop management and soil conservation The Renaissance saw a renewed interest in scientific exploration including agriculture Leonardo da Vinci and other scholars contributed to early agronomic theory studying plant growth crop rotation and animal husbandry Agronomy emerged as a distinct scientific discipline in the 1800s driven by advancements in chemistry and biology The development of scientific methods led to the study of plant physiology soil chemistry and the role of fertilizers in crop production Justus von Liebig a German chemist made groundbreaking discoveries about plant nutrition establishing that plants require specific minerals such as nitrogen phosphorus and potassium for growth In the early 20th century industrialization began transforming agriculture Mechanization the development of synthetic fertilizers and pesticides and improved crop varieties led to higher agricultural productivity The Green Revolution 1940s 1960s led by scientists like Norman Borlaug introduced high yield crop varieties and modern farming techniques helping to avert hunger in many parts of the world By the late same century concerns over the environmental impact of industrial agriculture such as soil degradation water pollution and biodiversity loss led to a push toward sustainable agriculture Today agronomy continues to adapt to challenges of climate change global food security and the need to balance productivity with environmental stewardship Plant breedingAn agronomist field sampling a trial plot of flax This topic of agronomy involves selective breeding of plants to produce the best crops for various conditions Plant breeding has increased crop yields and has improved the nutritional value of numerous crops including corn soybeans and wheat It has also resulted in the development of new types of plants For example a hybrid grain named triticale was produced by crossbreeding rye and wheat Triticale contains more usable protein than does either rye or wheat Agronomy has also been instrumental for fruit and vegetable production research Furthermore the application of plant breeding for turfgrass development has resulted in a reduction in the demand for fertilizer and water inputs requirements as well as turf types with higher disease resistance BiotechnologyAn agronomist mapping a plant genome Agronomists use biotechnology to extend and expedite the development of desired characteristics Biotechnology is often a laboratory activity requiring field testing of new crop varieties that are developed In addition to increasing crop yields agronomic biotechnology is being applied increasingly for novel uses other than food For example oilseed is at present used mainly for margarine and other food oils but it can be modified to produce fatty acids for detergents substitute fuels and petrochemicals Soil scienceAgronomists study sustainable ways to make soils more productive and profitable They classify soils and analyze them to determine whether they contain nutrients vital for plant growth Common macronutrients analyzed include compounds of nitrogen phosphorus potassium calcium magnesium and sulfur Soil is also assessed for several micronutrients like zinc and boron The percentage of organic matter soil pH and nutrient holding capacity cation exchange capacity are tested in a regional laboratory Agronomists will interpret these laboratory reports and make recommendations to modify soil nutrients for optimal plant growth Soil conservation Additionally agronomists develop methods to preserve soil and decrease the effects of erosion by wind and water For example a technique known as contour plowing may be used to prevent soil erosion and conserve rainfall Researchers of agronomy also seek ways to use the soil more effectively for solving other problems Such problems include the disposal of human and animal manure water pollution and pesticide accumulation in the soil as well as preserving the soil for future generations such as the burning of paddocks after crop production Pasture management techniques include no till farming planting of soil binding grasses along contours on steep slopes and using contour drains of depths as much as 1 metre AgroecologyAgroecology is the management of agricultural systems with an emphasis on ecological and environmental applications This topic is associated closely with work for sustainable agriculture organic farming and alternative food systems and the development of alternative cropping systems Theoretical modelingTheoretical production ecology is the quantitative study of the growth of crops The plant is treated as a kind of biological factory which processes light carbon dioxide water and nutrients into harvestable products The main parameters are temperature sunlight standing crop biomass plant production distribution and nutrient and water supply citation needed See alsoAgricultural engineering Agricultural policy Agroecology Agrophysics Crop farming Food systems Horticulture Green Revolution Vegetable farmingReferencesGeorgetown International Environmental Law Review Hoeft Robert G 2000 Modern Corn and Soybean Production MCSP Publications pp 107 to 171 ASIN B0006RLD8U Arya R L Arya S Arya Renu Kumar J 2015 01 01 Fundamentals of Agriculture ICAR NET JRF SRF CSIR NET UPSC amp IFS Scientific Publishers ISBN 978 93 86102 36 2 Iowa State University Undergraduate Program Agroecology Archived from the original on 7 October 2008 Rosenberg AgronomBibliographyWendy B Murphy The Future World of Agriculture Watts 1984 Antonio Saltini Storia delle scienze agrarie 4 vols Bologna 1984 89 ISBN 88 206 2412 5 ISBN 88 206 2413 3 ISBN 88 206 2414 1 ISBN 88 206 2415 XExternal linksLook up agronomist in Wiktionary the free dictionary Wikimedia Commons has media related to Agronomy Wikiquote has quotations related to Agronomy At Wikiversity you can learn more and teach others about Agronomy at the Department of Agronomy The American Society of Agronomy ASA Crop Science Society of America CSSA Soil Science Society of America SSSA European Society for Agronomy The National Agricultural Library NAL Comprehensive agricultural library Information System for Agriculture and Food Research Portals AgricultureEcologyEnvironment