![Unit prefix](https://www.english.nina.az/image-resize/1600/900/web/wikipedia.jpg)
A unit prefix is a specifier or mnemonic that is added to the beginning of a unit of measurement to indicate multiples or fractions of the units. Units of various sizes are commonly formed by the use of such prefixes. The prefixes of the metric system, such as kilo and milli, represent multiplication by positive or negative powers of ten. In information technology it is common to use binary prefixes, which are based on powers of two. Historically, many prefixes have been used or proposed by various sources, but only a narrow set has been recognised by standards organisations.
Metric prefixes
Prefix | Symbol | Factor | Power |
---|---|---|---|
tera | T | 1000000000000 | 1012 |
giga | G | 1000000000 | 109 |
mega | M | 1000000 | 106 |
kilo | k | 1000 | 103 |
hecto | h | 100 | 102 |
deca | da | 10 | 101 |
(none) | (none) | 1 | 100 |
deci | d | 0.1 | 10−1 |
centi | c | 0.01 | 10−2 |
milli | m | 0.001 | 10−3 |
micro | μ | 0.000001 | 10−6 |
nano | n | 0.000000001 | 10−9 |
pico | p | 0.000000000001 | 10−12 |
The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple and fraction of a unit. Each prefix has a unique symbol that is added to the beginning of the unit symbol. Some of the prefixes date back to the introduction of the metric system in the 1790s, but new prefixes have been added, and some have been revised. The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units (SI). In addition to those listed in the everyday-use table, the SI includes standardised prefixes for 1015 (peta), 1018 (exa), 1021 (zetta), 1024 (yotta), 1027 (ronna), and 1030 (quetta); and for 10−15 (femto), 10−18 (atto), 10−21 (zepto), 10−24 (yocto), 10−27 (ronto), and 10−30 (quecto).
Although formerly in use, the SI disallows combining prefixes; the *microkilogram or *centimillimetre, for example, are not permitted. Prefixes corresponding to powers of one thousand are usually preferred, however, units such as the hectopascal, centimetre, and centilitre, are widely used; outside the SI, the units hectare, decibel are also common. The unit prefixes are always considered to be part of the unit, so that, e.g., in exponentiation, 1 km2 means one square kilometre, not one thousand square metres, and 1 cm3 means one cubic centimetre, not one hundredth of a cubic metre.
In general, prefixes are used with any metric unit, but may also be used with non-metric units. Some combinations, however, are more common than others. The choice of prefixes for a given unit has often arisen by convenience of use and historical developments. Unit prefixes that are much larger or smaller than encountered in practice are seldom used, albeit valid combinations. In most contexts only a few, the most common, combinations are established. For example, prefixes for multiples greater than one thousand are rarely applied to the gram or metre.
Some prefixes used in older versions of the metric system are no longer used. The prefixes myria-, (from the Greek μύριοι, mýrioi), double- and demi-, denoting factors of 10000, 2 and 1⁄2 respectively, were parts of the original metric system adopted in France in 1795, but they were not retained when the SI prefixes were agreed internationally by the 11th CGPM conference in 1960. The prefix "myrio-" was an alternative spelling variant for "myria-", as proposed by Thomas Young.
Binary prefixes
Prefix | Symbol | Power |
---|---|---|
yobi | Yi | 280 |
zebi | Zi | 270 |
exbi | Ei | 260 |
pebi | Pi | 250 |
tebi | Ti | 240 |
gibi | Gi | 230 |
mebi | Mi | 220 |
kibi | Ki | 210 |
A binary prefix indicates multiplication by a power of two. The tenth power of 2 (210) has the value 1024, which is close to 1000. This has prompted the use of the metric prefixes kilo, mega, and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information, the byte.
Units of information are not covered in the International System of Units. Computer professionals have historically used the same spelling, pronunciation and symbols for the binary series in the description of computer memory, although the symbol for kilo is often capitalised. For example, in citations of main memory or RAM capacity, kilobyte, megabyte and gigabyte customarily mean 1024 (210), 1048576 (220) and 1073741824 (230) bytes respectively.
In the specifications of hard disk drive capacities and network transmission bit rates, decimal prefixes are used. For example, a 500-gigabyte hard drive holds 500 billion bytes, and a 100-megabit-per-second Ethernet connection transfers data at 100 million bits per second. The ambiguity has led to some confusion and even lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller. (see Orin Safier v. Western Digital Corporation and Cho v. Seagate Technology (US) Holdings, Inc.). To protect themselves, some sellers write out the full term as "1000000".
With the aim of avoiding ambiguity the International Electrotechnical Commission (IEC) adopted new binary prefixes in 1998 (IEC 80000-13:2008 formerly subclauses 3.8 and 3.9 of IEC 60027-2:2005). Each binary prefix is formed from the first syllable of the decimal prefix with the similar value, and the syllable "bi". The symbols are the decimal symbol, always capitalised, followed by the letter "i". According to these standards, kilo, mega, giga, et seq. should only be used in the decimal sense, even when referring to data storage capacities: kilobyte and megabyte denote one thousand and one million bytes respectively (consistent with the metric system), while terms such as kibibyte, mebibyte and gibibyte, with symbols KiB, MiB and GiB, denote 210, 220 and 230 bytes respectively.
Unofficial prefixes
Although some of the following unofficial prefixes appear repeated on the internet, none are in use.
A metric prefix myria (abbreviation "my"), for 10,000, was deprecated in 1960. Before the adoption of ronna and quetta for 1027 and 1030 and ronto and quecto for 10−27 and 10−30 in November 2022, many personal, and sometimes facetious, proposals for additional metric prefixes were formulated. The prefix bronto, as used in the term "brontobyte", has been used to represent anything from 1015 to 1027 bytes, most often 1027. In 2010, an online petition sought to establish hella- as the SI prefix for 1027, a movement that began on the campus of UC Davis. The prefix, which has since appeared in the San Francisco Chronicle, Daily Telegraph, Wired and some other scientific magazines, was recognised by Google, in a non-serious fashion, in May 2010. Ian Mills, president of the Consultative Committee on Units, considered the chances of official adoption to be remote. The prefix geop and term "geopbyte" have been used in the information technology industry to refer to 1030 bytes, following "brontobyte".
The ascending prefixes peta (10005) and exa (10006) are based on the Greek-derived numeric prefixes "penta" (5) and "hexa" (6). The largest prefixes zetta (10007), and yotta (10008) and, similarly, the descending prefixes zepto (1000−7) and yocto (1000−8) are derived from Latin "septem" (7) and " octo" (8) plus the initial letters "z" and "y". The initial letters "z" and "y" appear in the largest SI prefixes. They were changed because of previously proposed ascending hepto (Greek "hepta" (7)) was already in use as a numerical prefix (implying seven) and the letter "h" as both SI-accepted non-SI unit (hour) and prefix (hecto 102), the same applied to "s" from previously proposed descending septo (i.e. SI unit "s", seconds), while "o" for octo was problematic since a symbol "o" could be confused with zero.
Before the adoption of new prefixes in 2022, several personal proposals had been made for extending the series of prefixes, with ascending terms such as xenna, weka, vendeka (from Greek "ennea" (9), "deka" (10), "endeka" (11)) and descending terms such as xono, weco, vundo (from Latin "novem"/"nona" (9), "decem" (10), "undecim" (11)). Using Greek for ascending and Latin for descending would be consistent with established prefixes such as deca, hecto, kilo vs. deci, centi, milli.
In 2001, a few unofficial prefixes appeared on the Internet: hepa (1021), ento (10−21), otta (1024), fito (10−24), nea (1027), syto (10−27), dea (1030), tredo (10−30), una (1033) and revo (10−33). The Oxford professor Jeffrey K. Aronson has suggested extending beyond zetta/zepto and yotta/yocto with xenta/xenno, wekta/weko, vendeka/vendeko, and udeka/udeko, based on the idea that the "Z" and "Y" prefixes would continue backwards through the English alphabet. He goes on to list a large number of prefixes, starting with Xona, Weka, Vunda, Uda, Treda, Sorta, ... Another proposal for xenta/xona is novetta, from the Italian "nove" (or "nine"). In 1993, Morgan Burke proposed, as a joke, harpo for 10−27, groucho for 10−30 (and therefore harpi for 1027, grouchi for 1030, zeppi for 1033, gummi for 1036, and chici for 1039), all of these being references to the comedy act, the Marx Brothers.
Use for quantities of bits and bytes
Prefixes for decimal and binary multiples | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Either metric and binary prefixes are used for representing quantities of bits and bytes.
See also
- Order of magnitude
- SI base unit
- Indian numbering system
Notes
- "The names zepto and zetta suggest the digit seven [sept] (seventh power of 103) and the letter 'z' replaces the letter 's' to avoid the duplicate use of the letter 's' as a symbol. The names yocto and yotta are derived from octo, which suggests the number eight (eighth power of 103); the letter 'y' is added to avoid the use of the letter 'o' as a symbol because of the possible confusion with the digit zero." Resolution 4 of the 19th CGPM (1991)
References
- "Four Resolutions". Bipm.org. Retrieved 2012-03-01.
- "H.R. 596, An Act to authorise the use of the metric system of weights and measures". 1866-05-13. Archived from the original on 2013-01-14.
- Brewster, David (1830). The Edinburgh Encyclopædia. Vol. 12. Edinburgh, UK: William Blackwood, John Waugh, John Murray, Baldwin & Cradock, J. M. Richardson. p. 494. Retrieved 2015-10-09.
- Brewster, David (1832). The Edinburgh Encyclopaedia. Vol. 12 (1st American ed.). Joseph and Edward Parker. Retrieved 2015-10-09.
- "La Loi Du 18 Germinal An 3: Décision de tracer le mètre, unité fondamentale, sur une règle de platine. Nomenclature des " mesures républicaines ". Reprise de la triangulation" [The Law of 18 Germinal, Year 3: Decision to draw the fundamental unit metre on a platinum ruler. Nomenclature of "Republican measures". Resumption of the triangulation.]. L'Histoire Du Mètre [The history of the metre] (in French). histoire.du.metre.free.fr. Archived from the original on 2022-11-26. Retrieved 2015-10-12.
Art. 8. Dans les poids et mesures de capacité, chacune des mesures décimales de ces deux genres aura son double et sa moitié, afin de donner à la vente des divers objets toute la commodité que l'on peut désirer. Il y aura donc le double-litre et le demi-litre, le double-hectogramme et le demi-hectogramme, et ainsi des autres.
[Art. 8. In the weights and measures of capacity, each of the decimal measures of these two kinds will have its double and its half, in order to give to the sale of the various articles all the convenience that one can desire. There will therefore be the double-litre and the half-litre, the double-hectogram and the half-hectogram, and so on.] - Dingler, Johann Gottfried (1823). Polytechnisches Journal (in German). Vol. 11. Stuttgart, Germany: J.W. Gotta'schen Buchhandlung. Retrieved 2015-10-09.
- Shrivatav, P. N., ed. (1971). "Appendix B - XII Conversion Table". Gazetteer of India: Madhya Pradesh District Gazetteers - Indore. District Gazetteers Department, Madhya Pradesh, Bhopal. p. 785.
- Reimer, Jeremy (2006-06-30). "Western Digital settles drive size lawsuit". Ars Technica LLC. Retrieved 2012-02-18.
- Seagate lawsuit concludes, settlement announced, bit-tech.net
- "International System of Units (SI): Prefixes for binary multiples". The NIST Reference on Constants, Units, and Uncertainty. National Institute of Science and Technology. Retrieved 2007-09-09.
- "Large Numbers – Notes (page 3) at MROB". Archived from the original on 2022-12-21. Retrieved 2022-12-24.
- Calvin (2021) [2020, 2000-11-05]. Michon, Gerard P. (ed.). "Current and Deprecated Prefixes". Archived from the original on 2022-12-21. Retrieved 2022-12-24.
- Foley, John (2002-05-27). "Funny prefixes & dubious proposals (updated yearly)". Archived from the original on 2022-12-24. Retrieved 2022-12-24.
- Michon, Gerard P. (2013-10-09). "Extreme Big Data: Beyond Zettabytes And Yottabytes". Forbes. Archived from the original on 2022-12-24. Retrieved 2022-12-24.
- "BBC article suggesting that a "brontobyte" is 1027 bytes".
- "Unwired Enterprise Products" (PDF). Sybase Magazine (Q3 2004): 25. Archived from the original (PDF) on 2014-10-18.
- "Redirect".
- "(undefined)". MacUser. 7: 362. 1991-02-16. Archived from the original on 2022-12-24.
1 brontobyte (1,000,000,000 megabytes)
- "Hellabytes? A Campaign to Turn Slang into Science". Time. 2010-03-10. Archived from the original on March 13, 2010. Retrieved 2010-05-20.
- Moore, Matthew (2010-03-02). "Hella number: scientists call for new word for 1,000,000,000,000,000,000,000,000,000". The Telegraph. Archived from the original on 2022-12-24. Retrieved 2019-01-04.
More than 20,000 scientists, students and members of the public have signed an online petition backing the new quantity, which would be used for figures with 27 zeros after the first digit.
- "Jargon Watch". Wired. Vol. 18, no. 6. June 2010.
[…] a proposed metric prefix […] useful for describing mega-measurements like Earth's mass (6 Hellagrams). A Facebook petition garnered 30000 signatures
- "The Official Petition to Establish "Hella-" as the SI Prefix for 10^27". Facebook. Retrieved 2010-06-04.
- Kim, Ryan (2010-05-24). "Google gets behind 'hella' campaign". The San Francisco Chronicle. Retrieved 2010-06-04.
- Chawkins, Steve (2010-06-06). "Physics major has a name for a really big number". Los Angeles Times: 2. Archived from the original on July 11, 2010.
- Proceedings of the 19th CGPM (1991), page 80.
- "International System" in Glenn Elert, The Physics Hypertextbook
- Gyllenbok, Jan; Encyclopaedia of Historical Metrology, Weights, and Measures, volume 1, Science Networks Historical Studies 56, Birkhäuser/Springer International Publishing AG, 2010, ISBN 978-3-319-57596-4, page 204
External links
- Moerner Lab Single-Molecule Research Page (Jokingly defines 1 guacamole = 1 / (Avocado's number) of moles. Scientific paper with reference)
- Vendeka.org Home page for the use of the non-SI prefix vendeka to represent 10 to the power of 33, as in vendekabyte.
A unit prefix is a specifier or mnemonic that is added to the beginning of a unit of measurement to indicate multiples or fractions of the units Units of various sizes are commonly formed by the use of such prefixes The prefixes of the metric system such as kilo and milli represent multiplication by positive or negative powers of ten In information technology it is common to use binary prefixes which are based on powers of two Historically many prefixes have been used or proposed by various sources but only a narrow set has been recognised by standards organisations Metric prefixesMetric prefixes in everyday usevte Prefix Symbol Factor Powertera T 1000 000 000 000 1012giga G 1000 000 000 109mega M 1000 000 106kilo k 1000 103hecto h 100 102deca da 10 101 none none 1 100deci d 0 1 10 1centi c 0 01 10 2milli m 0 001 10 3micro m 0 000001 10 6nano n 0 000000 001 10 9pico p 0 000000 000 001 10 12 The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple and fraction of a unit Each prefix has a unique symbol that is added to the beginning of the unit symbol Some of the prefixes date back to the introduction of the metric system in the 1790s but new prefixes have been added and some have been revised The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units SI In addition to those listed in the everyday use table the SI includes standardised prefixes for 1015 peta 1018 exa 1021 zetta 1024 yotta 1027 ronna and 1030 quetta and for 10 15 femto 10 18 atto 10 21 zepto 10 24 yocto 10 27 ronto and 10 30 quecto Distance marker on the Rhine 36 XXXVI myriametres from Basel Although formerly in use the SI disallows combining prefixes the microkilogram or centimillimetre for example are not permitted Prefixes corresponding to powers of one thousand are usually preferred however units such as the hectopascal centimetre and centilitre are widely used outside the SI the units hectare decibel are also common The unit prefixes are always considered to be part of the unit so that e g in exponentiation 1 km2 means one square kilometre not one thousand square metres and 1 cm3 means one cubic centimetre not one hundredth of a cubic metre In general prefixes are used with any metric unit but may also be used with non metric units Some combinations however are more common than others The choice of prefixes for a given unit has often arisen by convenience of use and historical developments Unit prefixes that are much larger or smaller than encountered in practice are seldom used albeit valid combinations In most contexts only a few the most common combinations are established For example prefixes for multiples greater than one thousand are rarely applied to the gram or metre Some prefixes used in older versions of the metric system are no longer used The prefixes myria from the Greek myrioi myrioi double and demi denoting factors of 10000 2 and 1 2 respectively were parts of the original metric system adopted in France in 1795 but they were not retained when the SI prefixes were agreed internationally by the 11th CGPM conference in 1960 The prefix myrio was an alternative spelling variant for myria as proposed by Thomas Young Binary prefixesBinary prefixes Prefix Symbol Poweryobi Yi 280zebi Zi 270exbi Ei 260pebi Pi 250tebi Ti 240gibi Gi 230mebi Mi 220kibi Ki 210 A binary prefix indicates multiplication by a power of two The tenth power of 2 210 has the value 1024 which is close to 1000 This has prompted the use of the metric prefixes kilo mega and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information the byte Units of information are not covered in the International System of Units Computer professionals have historically used the same spelling pronunciation and symbols for the binary series in the description of computer memory although the symbol for kilo is often capitalised For example in citations of main memory or RAM capacity kilobyte megabyte and gigabyte customarily mean 1024 210 1048 576 220 and 1073 741 824 230 bytes respectively In the specifications of hard disk drive capacities and network transmission bit rates decimal prefixes are used For example a 500 gigabyte hard drive holds 500 billion bytes and a 100 megabit per second Ethernet connection transfers data at 100 million bits per second The ambiguity has led to some confusion and even lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller see Orin Safier v Western Digital Corporation and Cho v Seagate Technology US Holdings Inc To protect themselves some sellers write out the full term as 1000 000 With the aim of avoiding ambiguity the International Electrotechnical Commission IEC adopted new binary prefixes in 1998 IEC 80000 13 2008 formerly subclauses 3 8 and 3 9 of IEC 60027 2 2005 Each binary prefix is formed from the first syllable of the decimal prefix with the similar value and the syllable bi The symbols are the decimal symbol always capitalised followed by the letter i According to these standards kilo mega giga et seq should only be used in the decimal sense even when referring to data storage capacities kilobyte and megabyte denote one thousand and one million bytes respectively consistent with the metric system while terms such as kibibyte mebibyte and gibibyte with symbols KiB MiB and GiB denote 210 220 and 230 bytes respectively Unofficial prefixesAlthough some of the following unofficial prefixes appear repeated on the internet none are in use A metric prefix myria abbreviation my for 10 000 was deprecated in 1960 Before the adoption of ronna and quetta for 1027 and 1030 and ronto and quecto for 10 27 and 10 30 in November 2022 many personal and sometimes facetious proposals for additional metric prefixes were formulated The prefix bronto as used in the term brontobyte has been used to represent anything from 1015 to 1027 bytes most often 1027 In 2010 an online petition sought to establish hella as the SI prefix for 1027 a movement that began on the campus of UC Davis The prefix which has since appeared in the San Francisco Chronicle Daily Telegraph Wired and some other scientific magazines was recognised by Google in a non serious fashion in May 2010 Ian Mills president of the Consultative Committee on Units considered the chances of official adoption to be remote The prefix geop and term geopbyte have been used in the information technology industry to refer to 1030 bytes following brontobyte The ascending prefixes peta 1000 5 and exa 1000 6 are based on the Greek derived numeric prefixes penta 5 and hexa 6 The largest prefixes zetta 1000 7 and yotta 1000 8 and similarly the descending prefixes zepto 1000 7 and yocto 1000 8 are derived from Latin septem 7 and octo 8 plus the initial letters z and y The initial letters z and y appear in the largest SI prefixes They were changed because of previously proposed ascending hepto Greek hepta 7 was already in use as a numerical prefix implying seven and the letter h as both SI accepted non SI unit hour and prefix hecto 102 the same applied to s from previously proposed descending septo i e SI unit s seconds while o for octo was problematic since a symbol o could be confused with zero Before the adoption of new prefixes in 2022 several personal proposals had been made for extending the series of prefixes with ascending terms such as xenna weka vendeka from Greek ennea 9 deka 10 endeka 11 and descending terms such as xono weco vundo from Latin novem nona 9 decem 10 undecim 11 Using Greek for ascending and Latin for descending would be consistent with established prefixes such as deca hecto kilo vs deci centi milli In 2001 a few unofficial prefixes appeared on the Internet hepa 1021 ento 10 21 otta 1024 fito 10 24 nea 1027 syto 10 27 dea 1030 tredo 10 30 una 1033 and revo 10 33 The Oxford professor Jeffrey K Aronson has suggested extending beyond zetta zepto and yotta yocto with xenta xenno wekta weko vendeka vendeko and udeka udeko based on the idea that the Z and Y prefixes would continue backwards through the English alphabet He goes on to list a large number of prefixes starting with Xona Weka Vunda Uda Treda Sorta Another proposal for xenta xona is novetta from the Italian nove or nine In 1993 Morgan Burke proposed as a joke harpo for 10 27 groucho for 10 30 and therefore harpi for 1027 grouchi for 1030 zeppi for 1033 gummi for 1036 and chici for 1039 all of these being references to the comedy act the Marx Brothers Use for quantities of bits and bytesPrefixes for decimal and binary multiplesDecimalValue SI1000 103 k kilo10002 106 M mega10003 109 G giga10004 1012 T tera10005 1015 P peta10006 1018 E exa10007 1021 Z zetta10008 1024 Y yotta10009 1027 R ronna100010 1030 Q quetta BinaryValue IEC JEDEC1024 210 Ki kibi K kilo10242 220 Mi mebi M mega10243 230 Gi gibi G giga10244 240 Ti tebi T tera10245 250 Pi pebi 10246 260 Ei exbi 10247 270 Zi zebi 10248 280 Yi yobi vte Either metric and binary prefixes are used for representing quantities of bits and bytes See alsoOrder of magnitude SI base unit Indian numbering systemNotes The names zepto and zetta suggest the digit seven sept seventh power of 103 and the letter z replaces the letter s to avoid the duplicate use of the letter s as a symbol The names yocto and yotta are derived from octo which suggests the number eight eighth power of 103 the letter y is added to avoid the use of the letter o as a symbol because of the possible confusion with the digit zero Resolution 4 of the 19th CGPM 1991 References Four Resolutions Bipm org Retrieved 2012 03 01 H R 596 An Act to authorise the use of the metric system of weights and measures 1866 05 13 Archived from the original on 2013 01 14 Brewster David 1830 The Edinburgh Encyclopaedia Vol 12 Edinburgh UK William Blackwood John Waugh John Murray Baldwin amp Cradock J M Richardson p 494 Retrieved 2015 10 09 Brewster David 1832 The Edinburgh Encyclopaedia Vol 12 1st American ed Joseph and Edward Parker Retrieved 2015 10 09 La Loi Du 18 Germinal An 3 Decision de tracer le metre unite fondamentale sur une regle de platine Nomenclature des mesures republicaines Reprise de la triangulation The Law of 18 Germinal Year 3 Decision to draw the fundamental unit metre on a platinum ruler Nomenclature of Republican measures Resumption of the triangulation L Histoire Du Metre The history of the metre in French histoire du metre free fr Archived from the original on 2022 11 26 Retrieved 2015 10 12 Art 8 Dans les poids et mesures de capacite chacune des mesures decimales de ces deux genres aura son double et sa moitie afin de donner a la vente des divers objets toute la commodite que l on peut desirer Il y aura donc le double litre et le demi litre le double hectogramme et le demi hectogramme et ainsi des autres Art 8 In the weights and measures of capacity each of the decimal measures of these two kinds will have its double and its half in order to give to the sale of the various articles all the convenience that one can desire There will therefore be the double litre and the half litre the double hectogram and the half hectogram and so on Dingler Johann Gottfried 1823 Polytechnisches Journal in German Vol 11 Stuttgart Germany J W Gotta schen Buchhandlung Retrieved 2015 10 09 Shrivatav P N ed 1971 Appendix B XII Conversion Table Gazetteer of India Madhya Pradesh District Gazetteers Indore District Gazetteers Department Madhya Pradesh Bhopal p 785 Reimer Jeremy 2006 06 30 Western Digital settles drive size lawsuit Ars Technica LLC Retrieved 2012 02 18 Seagate lawsuit concludes settlement announced bit tech net International System of Units SI Prefixes for binary multiples The NIST Reference on Constants Units and Uncertainty National Institute of Science and Technology Retrieved 2007 09 09 Large Numbers Notes page 3 at MROB Archived from the original on 2022 12 21 Retrieved 2022 12 24 Calvin 2021 2020 2000 11 05 Michon Gerard P ed Current and Deprecated Prefixes Archived from the original on 2022 12 21 Retrieved 2022 12 24 Foley John 2002 05 27 Funny prefixes amp dubious proposals updated yearly Archived from the original on 2022 12 24 Retrieved 2022 12 24 Michon Gerard P 2013 10 09 Extreme Big Data Beyond Zettabytes And Yottabytes Forbes Archived from the original on 2022 12 24 Retrieved 2022 12 24 BBC article suggesting that a brontobyte is 1027 bytes Unwired Enterprise Products PDF Sybase Magazine Q3 2004 25 Archived from the original PDF on 2014 10 18 Redirect undefined MacUser 7 362 1991 02 16 Archived from the original on 2022 12 24 1 brontobyte 1 000 000 000 megabytes Hellabytes A Campaign to Turn Slang into Science Time 2010 03 10 Archived from the original on March 13 2010 Retrieved 2010 05 20 Moore Matthew 2010 03 02 Hella number scientists call for new word for 1 000 000 000 000 000 000 000 000 000 The Telegraph Archived from the original on 2022 12 24 Retrieved 2019 01 04 More than 20 000 scientists students and members of the public have signed an online petition backing the new quantity which would be used for figures with 27 zeros after the first digit Jargon Watch Wired Vol 18 no 6 June 2010 a proposed metric prefix useful for describing mega measurements like Earth s mass 6 Hellagrams A Facebook petition garnered 30000 signatures The Official Petition to Establish Hella as the SI Prefix for 10 27 Facebook Retrieved 2010 06 04 Kim Ryan 2010 05 24 Google gets behind hella campaign The San Francisco Chronicle Retrieved 2010 06 04 Chawkins Steve 2010 06 06 Physics major has a name for a really big number Los Angeles Times 2 Archived from the original on July 11 2010 Proceedings of the 19th CGPM 1991 page 80 International System in Glenn Elert The Physics Hypertextbook Gyllenbok Jan Encyclopaedia of Historical Metrology Weights and Measures volume 1 Science Networks Historical Studies 56 Birkhauser Springer International Publishing AG 2010 ISBN 978 3 319 57596 4 page 204External linksMoerner Lab Single Molecule Research Page Jokingly defines 1 guacamole 1 Avocado s number of moles Scientific paper with reference Vendeka org Home page for the use of the non SI prefix vendeka to represent 10 to the power of 33 as in vendekabyte