This article needs additional citations for verification.(January 2024) |
A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.
In the Solar System, there are six planetary satellite systems containing 288 known natural satellites altogether. Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites: Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, and Eris. As of January 2022, there are 447 other minor planets known to have natural satellites.
A planet usually has at least around 10,000 times the mass of any natural satellites that orbit it, with a correspondingly much larger diameter. The Earth–Moon system is a unique exception in the Solar System; at 3,474 kilometres (2,158 miles) across, the Moon is 0.273 times the diameter of Earth and about 1⁄80 of its mass. The next largest ratios are the Neptune–Triton system at 0.055 (with a mass ratio of about 1 to 4790), the Saturn–Titan system at 0.044 (with the second mass ratio next to the Earth–Moon system, 1 to 4220), the Jupiter–Ganymede system at 0.038, and the Uranus–Titania system at 0.031. For the category of dwarf planets, Charon has the largest ratio, being 0.52 the diameter and 12.2% the mass of Pluto.
Terminology
The first known natural satellite was the Moon, but it was considered a "planet" until Copernicus' introduction of De revolutionibus orbium coelestium in 1543. Until the discovery of the Galilean satellites in 1610 there was no opportunity for referring to such objects as a class. Galileo chose to refer to his discoveries as Planetæ ("planets"), but later discoverers chose other terms to distinguish them from the objects they orbited.[citation needed]
The first to use the term satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus ("Narration About Four Satellites of Jupiter Observed") in 1610. He derived the term from the Latin word satelles, meaning "guard", "attendant", or "companion", because the satellites accompanied their primary planet in their journey through the heavens.
The term satellite thus became the normal one for referring to an object orbiting a planet, as it avoided the ambiguity of "moon". In 1957, however, the launching of the artificial object Sputnik created a need for new terminology. The terms man-made satellite and artificial moon were very quickly abandoned in favor of the simpler satellite. As a consequence, the term has become linked primarily with artificial objects flown in space.[citation needed]
Because of this shift in meaning, the term moon, which had continued to be used in a generic sense in works of popular science and fiction, has regained respectability and is now used interchangeably with natural satellite, even in scientific articles. When it is necessary to avoid both the ambiguity of confusion with Earth's natural satellite the Moon and the natural satellites of the other planets on the one hand, and artificial satellites on the other, the term natural satellite (using "natural" in a sense opposed to "artificial") is used. To further avoid ambiguity, the convention is to capitalize the word Moon when referring to Earth's natural satellite (a proper noun), but not when referring to other natural satellites (common nouns).
Many authors define "satellite" or "natural satellite" as orbiting some planet or minor planet, synonymous with "moon" – by such a definition all natural satellites are moons, but Earth and other planets are not satellites. A few recent authors define "moon" as "a satellite of a planet or minor planet", and "planet" as "a satellite of a star" – such authors consider Earth as a "natural satellite of the Sun".
Definition of a moon
There is no established lower limit on what is considered a "moon". Every natural celestial body with an identified orbit around a planet of the Solar System, some as small as a kilometer across, has been considered a moon, though objects a tenth that size within Saturn's rings, which have not been directly observed, have been called moonlets. Small asteroid moons (natural satellites of asteroids), such as Dactyl, have also been called moonlets.
The upper limit is also vague. Two orbiting bodies are sometimes described as a double planet rather than a primary and satellite. Asteroids such as 90 Antiope are considered double asteroids, but they have not forced a clear definition of what constitutes a moon. Some authors consider the Pluto–Charon system to be a double (dwarf) planet. The most common[citation needed] dividing line on what is considered a moon rests upon whether the barycentre is below the surface of the larger body, though this is somewhat arbitrary because it depends on distance as well as relative mass.
Origin and orbital characteristics
The natural satellites orbiting relatively close to the planet on prograde, uninclined circular orbits (regular satellites) are generally thought to have been formed out of the same collapsing region of the protoplanetary disk that created its primary. In contrast, irregular satellites (generally orbiting on distant, inclined, eccentric and/or retrograde orbits) are thought to be captured asteroids possibly further fragmented by collisions. Most of the major natural satellites of the Solar System have regular orbits, while most of the small natural satellites have irregular orbits. The Moon and the Moons of Pluto are exceptions among large bodies in that they are thought to have originated from the collision of two large protoplanetary objects early in the Solar System's history (see the giant impact hypothesis). The material that would have been placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites. As opposed to planetary-sized bodies, asteroid moons are thought to commonly form by this process. Triton is another exception; although large and in a close, circular orbit, its motion is retrograde and it is thought to be a captured dwarf planet.
Temporary satellites
The capture of an asteroid from a heliocentric orbit is not always permanent. According to simulations, temporary satellites should be a common phenomenon. The only observed examples are 1991 VG, 2006 RH120, 2020 CD3.
2006 RH120 was a temporary satellite of Earth for nine months in 2006 and 2007.
Tidal locking
Most regular moons (natural satellites following relatively close and prograde orbits with small orbital inclination and eccentricity) in the Solar System are tidally locked to their respective primaries, meaning that the same side of the natural satellite always faces its planet. This phenomenon comes about through a loss of energy due to tidal forces raised by the planet, slowing the rotation of the satellite until it is negligible. Exceptions are known; one such exception is Saturn's natural satellite Hyperion, which rotates chaotically because of the gravitational influence of Titan. Pluto's four, circumbinary small moons also rotate chaotically due to Charon's influence.
In contrast, the outer natural satellites of the giant planets (irregular satellites) are too far away to have become locked. For example, Jupiter's Himalia, Saturn's Phoebe, and Neptune's Nereid have rotation periods in the range of ten hours, whereas their orbital periods are hundreds of days.
Satellites of satellites
No "moons of moons" or subsatellites (natural satellites that orbit a natural satellite of a planet) are currently known. In most cases, the tidal effects of the planet would make such a system unstable.
However, calculations performed after the 2008 detection of a possible ring system around Saturn's moon Rhea indicate that satellites orbiting Rhea could have stable orbits. Furthermore, the suspected rings are thought to be narrow, a phenomenon normally associated with shepherd moons. However, targeted images taken by the Cassini spacecraft failed to detect rings around Rhea.
It has also been proposed that Saturn's moon Iapetus had a satellite in the past; this is one of several hypotheses that have been put forward to account for its equatorial ridge.
Light-curve analysis suggests that Saturn's irregular satellite Kiviuq is extremely prolate, and is likely a contact binary or even a binary moon.
Trojan satellites
Two natural satellites are known to have small companions at both their L4 and L5 Lagrangian points, sixty degrees ahead and behind the body in its orbit. These companions are called trojan moons, as their orbits are analogous to the trojan asteroids of Jupiter. The trojan moons are Telesto and Calypso, which are the leading and following companions, respectively, of the Saturnian moon Tethys; and Helene and Polydeuces, the leading and following companions of the Saturnian moon Dione.
Asteroid satellites
The discovery of 243 Ida's natural satellite Dactyl in the early 1990s confirmed that some asteroids have natural satellites; indeed, 87 Sylvia has two. Some, such as 90 Antiope, are double asteroids with two comparably sized components.
Shape
Neptune's moon Proteus is the largest irregularly shaped natural satellite; the shapes of Eris' moon Dysnomia and Orcus' moon Vanth are unknown. All other known natural satellites that are at least the size of Uranus's Miranda have lapsed into rounded ellipsoids under hydrostatic equilibrium, i.e. are "round/rounded satellites" and are sometimes categorized as planetary-mass moons. (Dysnomia's density is known to be high enough that it is probably a solid ellipsoid as well.) The larger natural satellites, being tidally locked, tend toward ovoid (egg-like) shapes: squat at their poles and with longer equatorial axes in the direction of their primaries (their planets) than in the direction of their motion. Saturn's moon Mimas, for example, has a major axis 9% greater than its polar axis and 5% greater than its other equatorial axis. Methone, another of Saturn's moons, is only around 3 km in diameter and visibly egg-shaped. The effect is smaller on the largest natural satellites, where their gravity is greater relative to the effects of tidal distortion, especially those that orbit less massive planets or, as in the case of the Moon, at greater distances.
Name | Satellite of | Difference in axes | |
---|---|---|---|
km | % of mean diameter | ||
Mimas | Saturn | 33.4 (20.4 / 13.0) | 8.4 (5.1 / 3.3) |
Enceladus | Saturn | 16.6 | 3.3 |
Miranda | Uranus | 14.2 | 3.0 |
Tethys | Saturn | 25.8 | 2.4 |
Io | Jupiter | 29.4 | 0.8 |
Luna | Earth | 4.3 | 0.1 |
Geological activity
Of the twenty known natural satellites in the Solar System that are large enough to be gravitationally rounded, several remain geologically active today. Io is the most volcanically active body in the Solar System, while Europa, Enceladus, Titan and Triton display evidence of ongoing tectonic activity and cryovolcanism. In the first three cases, the geological activity is powered by the tidal heating resulting from having eccentric orbits close to their giant-planet primaries. (This mechanism would have also operated on Triton in the past before its orbit was circularized.) Many other natural satellites, such as Earth's Moon, Ganymede, Tethys, and Miranda, show evidence of past geological activity, resulting from energy sources such as the decay of their primordial radioisotopes, greater past orbital eccentricities (due in some cases to past orbital resonances), or the differentiation or freezing of their interiors. Enceladus and Triton both have active features resembling geysers, although in the case of Triton solar heating appears to provide the energy. Titan and Triton have significant atmospheres; Titan also has hydrocarbon lakes. All four of the Galilean moons have atmospheres, though they are extremely thin. Four of the largest natural satellites, Europa, Ganymede, Callisto, and Titan, are thought to have subsurface oceans of liquid water, while smaller Enceladus also supports a global subsurface ocean of liquid water.
Occurrence in the Solar System
Besides planets and dwarf planets objects within our Solar System known to have natural satellites are 76 in the asteroid belt (five with two each), four Jupiter trojans, 39 near-Earth objects (two with two satellites each), and 14 Mars-crossers. There are also 84 known natural satellites of trans-Neptunian objects. Some 150 additional small bodies have been observed within the rings of Saturn, but only a few were tracked long enough to establish orbits. Planets around other stars are likely to have satellites as well, and although numerous candidates have been detected to date, none have yet been confirmed.
Of the inner planets, Mercury and Venus have no natural satellites; Earth has one large natural satellite, known as the Moon; and Mars has two tiny natural satellites, Phobos and Deimos. The giant planets have extensive systems of natural satellites, including half a dozen comparable in size to Earth's Moon: the four Galilean moons, Saturn's Titan, and Neptune's Triton. Saturn has an additional six mid-sized natural satellites massive enough to have achieved hydrostatic equilibrium, and Uranus has five. It has been suggested that some satellites may potentially harbour life.
Among the objects generally agreed by astronomers to be dwarf planets, Ceres and Sedna have no known natural satellites. Pluto has the relatively large natural satellite Charon and four smaller natural satellites; Styx, Nix, Kerberos, and Hydra.Haumea has two natural satellites; Orcus, Quaoar, Makemake, Gonggong, and Eris have one each. The Pluto–Charon system is unusual in that the center of mass lies in open space between the two, a characteristic sometimes associated with a double-planet system.
The seven largest natural satellites in the Solar System (those bigger than 2,500 km across) are Jupiter's Galilean moons (Ganymede, Callisto, Io, and Europa), Saturn's moon Titan, Earth's moon, and Neptune's captured natural satellite Triton. Triton, the smallest of these, has more mass than all smaller natural satellites together. Similarly in the next size group of nine mid-sized natural satellites, between 1,000 km and 1,600 km across, Titania, Oberon, Rhea, Iapetus, Charon, Ariel, Umbriel, Dione, and Tethys, the smallest, Tethys, has more mass than all smaller natural satellites together. As well as the natural satellites of the various planets, there are also over 80 known natural satellites of the dwarf planets, minor planets and other small Solar System bodies. Some studies estimate that up to 15% of all trans-Neptunian objects could have satellites.
The following is a comparative table classifying the natural satellites in the Solar System by diameter. The column on the right includes some notable planets, dwarf planets, asteroids, and trans-Neptunian objects for comparison. The natural satellites of the planets are named after mythological figures. These are predominantly Greek, except for the Uranian natural satellites, which are named after Shakespearean characters. The twenty satellites massive enough to be round are in bold in the table below. Minor planets and satellites where there is disagreement in the literature on roundness are italicized in the table below.
Mean diameter (km) | Satellites of planets | Satellites of dwarf planets | Satellites of other minor planets | Non-satellites for comparison | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Earth | Mars | Jupiter | Saturn | Uranus | Neptune | Orcus | Pluto | Haumea | Quaoar | Makemake | Gonggong | Eris | |||
4,000–6,000 | Ganymede Callisto | Titan | Mercury | ||||||||||||
3,000–4,000 | Moon | Io Europa | |||||||||||||
2,000–3,000 | Triton | Eris Pluto | |||||||||||||
1,000–2,000 | Rhea Iapetus Dione Tethys | Titania Oberon Umbriel Ariel | Charon | Makemake Haumea Gonggong, Quaoar | |||||||||||
500–1,000 | Enceladus | Dysnomia | Sedna, Ceres, Salacia, Orcus, Pallas, Vesta many more TNOs | ||||||||||||
250–500 | Mimas Hyperion | Miranda | Proteus Nereid | Vanth | Hiʻiaka | Salacia I Actaea Varda I Ilmarë Lempo II Hiisi | 10 Hygiea 704 Interamnia 87 Sylvia 47171 Lempo 107 Camilla | ||||||||
100–250 | Amalthea Himalia Thebe | Phoebe Janus Epimetheus | Sycorax Puck Portia | Larissa Galatea Despina | Namaka | S/2015 (136472) 1 | S/2005 (82075) 1 Sila–Nunam I Ceto I Phorcys Patroclus I Menoetius Lempo I Paha ~20 more moons of TNOs | 3 Juno 15760 Albion 5 Astraea 617 Patroclus 42355 Typhon and many others | |||||||
50–100 | Elara Pasiphae | Prometheus Pandora | Caliban Juliet Belinda Cressida Rosalind Desdemona Bianca | Thalassa Halimede Neso Naiad | Weywot | Xiangliu (probably) | 90 Antiope I Typhon I Echidna Logos I Zoe 5 more moons of TNOs | 90 Antiope 58534 Logos 253 Mathilde and many others | |||||||
25–50 | Carme Metis Sinope Lysithea Ananke | Siarnaq Helene Albiorix Atlas Pan | Ophelia Cordelia Setebos Prospero Perdita Stephano | Sao S/2002 N 5 Laomedeia Psamathe Hippocamp | Hydra Nix | Kalliope I Linus | 1036 Ganymed 243 Ida and many others | ||||||||
10–25 | Phobos Deimos | Leda Adrastea | Telesto Paaliaq Calypso Ymir Kiviuq Tarvos Ijiraq Erriapus | Mab Cupid Francisco Ferdinand Margaret Trinculo S/2023 U 1 | S/2021 N 1 (?) | Kerberos Styx | 762 Pulcova I Sylvia I Romulus 624 Hektor I Skamandrios Eugenia I Petit-Prince 121 Hermione I 283 Emma I 1313 Berna I 107 Camilla I | 433 Eros 1313 Berna and many others | |||||||
< 10 | 79 moons | 120 moons | Sylvia II Remus Ida I Dactyl and many others | many |
See also
- Circumplanetary disk – Accumulation of matter around a planet
- Co-orbital moon – Configuration of two or more astronomical objects
- Exomoon – Moon beyond the Solar System
- Inner moon – Natural satellite orbiting inside the orbit of a larger moon
- Irregular moon – Captured satellite following an irregular orbit
- Regular moon – Satellites that formed around their parent planet
- List of natural satellites
- Naming of moons
- Quasi-satellite – Type of satellite in sync with another orbit
- Subsatellite – A satellite that orbits a natural satellite (aka Submoon)
- Timeline of discovery of Solar System planets and their moons
- Trojan moon – Configuration of two or more astronomical objects
- Tug of war (astronomy) – Ratio of gravitational forces on a satellite from the Sun and host planet
Moons of planets
- The Moon, Earth's natural satellite
- Moons of Mars
- Moons of Jupiter
- Moons of Saturn
- Moons of Uranus
- Moons of Neptune
Moons of dwarf planets and small Solar System bodies
- Minor-planet moon
- Moons of Pluto
- Dysnomia, Eris's natural satellite
- Moons of Haumea
- S/2015 (136472) 1, Makemake's natural satellite
- Xiangliu, Gonggong's natural satellite
- Weywot, Quaoar's natural satellite
- Vanth, Orcus' binary natural satellite
References
- "Planet and Satellite Names and Discoverers". International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN). Retrieved 27 January 2012.
- Wm. Robert Johnston (30 September 2018). "Asteroids with Satellites". Johnston's Archive. Retrieved 22 October 2018.
- Canup, Robin M.; Ward, William R. (June 2006). "A common mass scaling for satellite systems of gaseous planets". Nature. 441 (7095): 834–839. Bibcode:2006Natur.441..834C. doi:10.1038/nature04860. ISSN 1476-4687. PMID 16778883. S2CID 4327454.
- Glenday, Craig (2014). Guinness World Records 2014. Guinness World Records Limited. p. 186. ISBN 978-1-908843-15-9.
- "Early History – First Satellites". www.jpl.nasa.gov. Archived from the original on 7 February 2018. Retrieved 8 February 2018.
- Kenneth R. Lang. "The Cambridge Guide to the Solar System" Archived 4 January 2023 at the Wayback Machine. 2011. p. 15. quote: "Any object that orbits a planet is now called a satellite, and a natural satellite is also now called a moon."
- Thérèse Encrenaz, et al. "The Solar System". 2004. p. 30.
- Tilman Spohn, Doris Breuer, Torrence Johnson. "Encyclopedia of the Solar System" Archived 4 January 2023 at the Wayback Machine. 2014. p. 18.
- David Andrew Weintraub. "Is Pluto a Planet?: A Historical Journey Through the Solar System". p. 65 quote: "... the general concept of a "moon" as a satellite of a planet and "planet" as a satellite of a star."
- "Satellite". www.merriam-webster.com. Merriam Webster. Retrieved 16 November 2015.
- Stillman, Dan (16 June 2015). "What Is a Satellite?". www.nasa.gov. NASA. Retrieved 16 November 2015.
- F. Marchis, et al. (2005). "Discovery of the triple asteroidal system 87 Sylvia". Nature. 436 (7052): 822–824. Bibcode:2005Natur.436..822M. doi:10.1038/nature04018. PMID 16094362. S2CID 4412813.
- Canup, Robin M.; Ward, William R. (2008). Origin of Europa and the Galilean Satellites. University of Arizona Press. p. 59. arXiv:0812.4995. Bibcode:2009euro.book...59C. ISBN 978-0-8165-2844-8.
- D'Angelo, G.; Podolak, M. (2015). "Capture and Evolution of Planetesimals in Circumjovian Disks". The Astrophysical Journal. 806 (1): 29–. arXiv:1504.04364. Bibcode:2015ApJ...806..203D. doi:10.1088/0004-637X/806/2/203. S2CID 119216797.
- Encyclopedia of the Solar System, page 366, Academic Press, 2007, Lucy-Ann Adams McFadden, Paul Robert Weissman, Torrence V. Johnson
- Canup, RM & Asphaug, E (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. S2CID 4413525.
- Stern, SA; Weaver, HA; Steffl, AJ; Mutchler, MJ; et al. (2006). "A giant impact origin for Pluto's small natural satellites and satellite multiplicity in the Kuiper belt". Nature. 439 (7079): 946–49. Bibcode:2006Natur.439..946S. doi:10.1038/nature04548. PMID 16495992. S2CID 4400037.
- Camille M. Carlisle (30 December 2011). "Pseudo-moons Orbit Earth". Sky & Telescope.
- Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert (15 March 2017). "Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system". Icarus. 285: 83–94. Bibcode:2017Icar..285...83F. doi:10.1016/j.icarus.2016.12.022.
- "2006 RH120 ( = 6R10DB9) (A second moon for the Earth?)". Great Shefford Observatory. 14 September 2017. Archived from the original on 6 February 2015. Retrieved 13 November 2017.
- Roger W. Sinnott (17 April 2007). "Earth's "Other Moon"". Sky & Telescope. Archived from the original on 2 April 2012. Retrieved 12 March 2018.
- Barnes, Rory, ed. (2010). Formation and Evolution of Exoplanets. John Wiley & Sons. p. 248. ISBN 978-3527408962.
- Northon, Karen (3 June 2015). "NASA's Hubble Finds Pluto's Moons Tumbling in Absolute Chaos". NASA. Retrieved 25 October 2015.
- Jones, G. H.; et al. (2008). "The Dust Halo of Saturn's Largest Icy Moon, Rhea – Jones et al. 319 (5868): 1380 – Science" (PDF). Science. 319 (5868): 1380–1384. Bibcode:2008Sci...319.1380J. doi:10.1126/science.1151524. PMID 18323452. S2CID 206509814. Archived from the original (PDF) on 8 March 2018.
- Jeff Hecht (6 March 2008). "Saturn satellite reveals first moon rings". New Scientist.
- Tiscareno, Matthew S.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Hedman, Matthew M. (2010). "Cassini imaging search rules out rings around Rhea – Tiscareno – 2010". Geophysical Research Letters. 37 (14): n/a. arXiv:1008.1764. Bibcode:2010GeoRL..3714205T. doi:10.1029/2010GL043663. S2CID 133143673.
- "How Iapetus, Saturn's outermost moon, got its ridge". 13 December 2010.
- Denk, T.; Mottola, S. (2019). Cassini Observations of Saturn's Irregular Moons (PDF). 50th Lunar and Planetary Science Conference. Lunar and Planetary Institute.
- "A moon with atmosphere | The Planetary Society". Archived from the original on 24 December 2019. Retrieved 24 December 2019.
- "Hubble Finds Oxygen Atmosphere on Jupiter's Moon, Europa". HubbleSite.org. Archived from the original on 16 April 2023. Retrieved 13 May 2022.
- "Hubble Finds Thin Oxygen Atmosphere on Ganymede". Jet Propulsion Laboratory. NASA. 23 October 1996. Archived from the original on 4 May 2009. Retrieved 17 February 2017.
- Woo, Marcus (27 January 2015). "Why We're Looking for Alien Life on Moons, Not Just Planets". Wired. Retrieved 27 January 2015.
- "Hubble Discovers New Pluto Moon". ESA/Hubble Press Release. Retrieved 13 July 2012.
- "How Big Is Pluto? New Horizons Settles Decades-Long Debate". NASA. 13 July 2015. Archived from the original on 1 July 2017. Retrieved 16 July 2015.
External links
All moons
- Natural Satellite Physical Parameters (JPL-NASA, with refs – last updated July 2006)
- Moons of the Solar System (The Planetary Society, as of March 2009)
- The JPL's Solar System Dynamics page
- "How Many Solar System Bodies". NASA/JPL Solar System Dynamics. Retrieved 26 January 2012.
- Planetary Names: Planet and Satellite Names and Discoverers
- "Upper size limit for moons explained" Kelly Young. Nature (vol 441, p. 834) 14 June 2006
- Images of planets and major moons (not to scale)
- The Planetary Society – Moon Montage(s)
- Album of moon images by Kevin M. Gill
- The Atlas of Moons by the National Geographic Society
Jupiter's moons
- Sheppard, Scott S. "The Jupiter Satellite and Moon Page". Department of Terrestrial Magnetism at Carnegie Institution for Science. Archived from the original on 31 May 2018. Retrieved 8 March 2018.* Scott S. Sheppard
- Scott S. Sheppard
Saturn's moons
- Satellite-hunters find four new moons of the planet Saturn David Brand | 26 October 2000
- Saturn's New Satellite S/2003 S1 Scott S. Sheppard
This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Natural satellite news newspapers books scholar JSTOR January 2024 Learn how and when to remove this message A natural satellite is in the most common usage an astronomical body that orbits a planet dwarf planet or small Solar System body or sometimes another natural satellite Natural satellites are colloquially referred to as moons a derivation from the Moon of Earth The Moon orbiting around Earth observed by the Deep Space Climate Observatory In the Solar System there are six planetary satellite systems containing 288 known natural satellites altogether Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites Orcus Pluto Haumea Quaoar Makemake Gonggong and Eris As of January 2022 there are 447 other minor planets known to have natural satellites A planet usually has at least around 10 000 times the mass of any natural satellites that orbit it with a correspondingly much larger diameter The Earth Moon system is a unique exception in the Solar System at 3 474 kilometres 2 158 miles across the Moon is 0 273 times the diameter of Earth and about 1 80 of its mass The next largest ratios are the Neptune Triton system at 0 055 with a mass ratio of about 1 to 4790 the Saturn Titan system at 0 044 with the second mass ratio next to the Earth Moon system 1 to 4220 the Jupiter Ganymede system at 0 038 and the Uranus Titania system at 0 031 For the category of dwarf planets Charon has the largest ratio being 0 52 the diameter and 12 2 the mass of Pluto TerminologyThe first known natural satellite was the Moon but it was considered a planet until Copernicus introduction of De revolutionibus orbium coelestium in 1543 Until the discovery of the Galilean satellites in 1610 there was no opportunity for referring to such objects as a class Galileo chose to refer to his discoveries as Planetae planets but later discoverers chose other terms to distinguish them from the objects they orbited citation needed The first to use the term satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus Narration About Four Satellites of Jupiter Observed in 1610 He derived the term from the Latin word satelles meaning guard attendant or companion because the satellites accompanied their primary planet in their journey through the heavens The term satellite thus became the normal one for referring to an object orbiting a planet as it avoided the ambiguity of moon In 1957 however the launching of the artificial object Sputnik created a need for new terminology The terms man made satellite and artificial moon were very quickly abandoned in favor of the simpler satellite As a consequence the term has become linked primarily with artificial objects flown in space citation needed Because of this shift in meaning the term moon which had continued to be used in a generic sense in works of popular science and fiction has regained respectability and is now used interchangeably with natural satellite even in scientific articles When it is necessary to avoid both the ambiguity of confusion with Earth s natural satellite the Moon and the natural satellites of the other planets on the one hand and artificial satellites on the other the term natural satellite using natural in a sense opposed to artificial is used To further avoid ambiguity the convention is to capitalize the word Moon when referring to Earth s natural satellite a proper noun but not when referring to other natural satellites common nouns Many authors define satellite or natural satellite as orbiting some planet or minor planet synonymous with moon by such a definition all natural satellites are moons but Earth and other planets are not satellites A few recent authors define moon as a satellite of a planet or minor planet and planet as a satellite of a star such authors consider Earth as a natural satellite of the Sun Definition of a moon Size comparison of Earth and the Moon There is no established lower limit on what is considered a moon Every natural celestial body with an identified orbit around a planet of the Solar System some as small as a kilometer across has been considered a moon though objects a tenth that size within Saturn s rings which have not been directly observed have been called moonlets Small asteroid moons natural satellites of asteroids such as Dactyl have also been called moonlets The upper limit is also vague Two orbiting bodies are sometimes described as a double planet rather than a primary and satellite Asteroids such as 90 Antiope are considered double asteroids but they have not forced a clear definition of what constitutes a moon Some authors consider the Pluto Charon system to be a double dwarf planet The most common citation needed dividing line on what is considered a moon rests upon whether the barycentre is below the surface of the larger body though this is somewhat arbitrary because it depends on distance as well as relative mass Origin and orbital characteristicsThe natural satellites orbiting relatively close to the planet on prograde uninclined circular orbits regular satellites are generally thought to have been formed out of the same collapsing region of the protoplanetary disk that created its primary In contrast irregular satellites generally orbiting on distant inclined eccentric and or retrograde orbits are thought to be captured asteroids possibly further fragmented by collisions Most of the major natural satellites of the Solar System have regular orbits while most of the small natural satellites have irregular orbits The Moon and the Moons of Pluto are exceptions among large bodies in that they are thought to have originated from the collision of two large protoplanetary objects early in the Solar System s history see the giant impact hypothesis The material that would have been placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites As opposed to planetary sized bodies asteroid moons are thought to commonly form by this process Triton is another exception although large and in a close circular orbit its motion is retrograde and it is thought to be a captured dwarf planet Temporary satellites The capture of an asteroid from a heliocentric orbit is not always permanent According to simulations temporary satellites should be a common phenomenon The only observed examples are 1991 VG 2006 RH120 2020 CD3 2006 RH120 was a temporary satellite of Earth for nine months in 2006 and 2007 Tidal lockingMost regular moons natural satellites following relatively close and prograde orbits with small orbital inclination and eccentricity in the Solar System are tidally locked to their respective primaries meaning that the same side of the natural satellite always faces its planet This phenomenon comes about through a loss of energy due to tidal forces raised by the planet slowing the rotation of the satellite until it is negligible Exceptions are known one such exception is Saturn s natural satellite Hyperion which rotates chaotically because of the gravitational influence of Titan Pluto s four circumbinary small moons also rotate chaotically due to Charon s influence In contrast the outer natural satellites of the giant planets irregular satellites are too far away to have become locked For example Jupiter s Himalia Saturn s Phoebe and Neptune s Nereid have rotation periods in the range of ten hours whereas their orbital periods are hundreds of days Satellites of satellitesArtist impression of Rhea s proposed rings No moons of moons or subsatellites natural satellites that orbit a natural satellite of a planet are currently known In most cases the tidal effects of the planet would make such a system unstable However calculations performed after the 2008 detection of a possible ring system around Saturn s moon Rhea indicate that satellites orbiting Rhea could have stable orbits Furthermore the suspected rings are thought to be narrow a phenomenon normally associated with shepherd moons However targeted images taken by the Cassini spacecraft failed to detect rings around Rhea It has also been proposed that Saturn s moon Iapetus had a satellite in the past this is one of several hypotheses that have been put forward to account for its equatorial ridge Light curve analysis suggests that Saturn s irregular satellite Kiviuq is extremely prolate and is likely a contact binary or even a binary moon Trojan satellitesTwo natural satellites are known to have small companions at both their L4 and L5 Lagrangian points sixty degrees ahead and behind the body in its orbit These companions are called trojan moons as their orbits are analogous to the trojan asteroids of Jupiter The trojan moons are Telesto and Calypso which are the leading and following companions respectively of the Saturnian moon Tethys and Helene and Polydeuces the leading and following companions of the Saturnian moon Dione Asteroid satellitesThe discovery of 243 Ida s natural satellite Dactyl in the early 1990s confirmed that some asteroids have natural satellites indeed 87 Sylvia has two Some such as 90 Antiope are double asteroids with two comparably sized components ShapeThe relative masses of the natural satellites of the Solar System Mimas Enceladus and Miranda are too small to be visible at this scale All the irregularly shaped natural satellites even added together would also be too small to be visible Neptune s moon Proteus is the largest irregularly shaped natural satellite the shapes of Eris moon Dysnomia and Orcus moon Vanth are unknown All other known natural satellites that are at least the size of Uranus s Miranda have lapsed into rounded ellipsoids under hydrostatic equilibrium i e are round rounded satellites and are sometimes categorized as planetary mass moons Dysnomia s density is known to be high enough that it is probably a solid ellipsoid as well The larger natural satellites being tidally locked tend toward ovoid egg like shapes squat at their poles and with longer equatorial axes in the direction of their primaries their planets than in the direction of their motion Saturn s moon Mimas for example has a major axis 9 greater than its polar axis and 5 greater than its other equatorial axis Methone another of Saturn s moons is only around 3 km in diameter and visibly egg shaped The effect is smaller on the largest natural satellites where their gravity is greater relative to the effects of tidal distortion especially those that orbit less massive planets or as in the case of the Moon at greater distances Name Satellite of Difference in axeskm of mean diameterMimas Saturn 33 4 20 4 13 0 8 4 5 1 3 3 Enceladus Saturn 16 6 3 3Miranda Uranus 14 2 3 0Tethys Saturn 25 8 2 4Io Jupiter 29 4 0 8Luna Earth 4 3 0 1Geological activityOf the twenty known natural satellites in the Solar System that are large enough to be gravitationally rounded several remain geologically active today Io is the most volcanically active body in the Solar System while Europa Enceladus Titan and Triton display evidence of ongoing tectonic activity and cryovolcanism In the first three cases the geological activity is powered by the tidal heating resulting from having eccentric orbits close to their giant planet primaries This mechanism would have also operated on Triton in the past before its orbit was circularized Many other natural satellites such as Earth s Moon Ganymede Tethys and Miranda show evidence of past geological activity resulting from energy sources such as the decay of their primordial radioisotopes greater past orbital eccentricities due in some cases to past orbital resonances or the differentiation or freezing of their interiors Enceladus and Triton both have active features resembling geysers although in the case of Triton solar heating appears to provide the energy Titan and Triton have significant atmospheres Titan also has hydrocarbon lakes All four of the Galilean moons have atmospheres though they are extremely thin Four of the largest natural satellites Europa Ganymede Callisto and Titan are thought to have subsurface oceans of liquid water while smaller Enceladus also supports a global subsurface ocean of liquid water Occurrence in the Solar SystemLargest moons to scale with their parent planets and dwarf planet Besides planets and dwarf planets objects within our Solar System known to have natural satellites are 76 in the asteroid belt five with two each four Jupiter trojans 39 near Earth objects two with two satellites each and 14 Mars crossers There are also 84 known natural satellites of trans Neptunian objects Some 150 additional small bodies have been observed within the rings of Saturn but only a few were tracked long enough to establish orbits Planets around other stars are likely to have satellites as well and although numerous candidates have been detected to date none have yet been confirmed Of the inner planets Mercury and Venus have no natural satellites Earth has one large natural satellite known as the Moon and Mars has two tiny natural satellites Phobos and Deimos The giant planets have extensive systems of natural satellites including half a dozen comparable in size to Earth s Moon the four Galilean moons Saturn s Titan and Neptune s Triton Saturn has an additional six mid sized natural satellites massive enough to have achieved hydrostatic equilibrium and Uranus has five It has been suggested that some satellites may potentially harbour life Among the objects generally agreed by astronomers to be dwarf planets Ceres and Sedna have no known natural satellites Pluto has the relatively large natural satellite Charon and four smaller natural satellites Styx Nix Kerberos and Hydra Haumea has two natural satellites Orcus Quaoar Makemake Gonggong and Eris have one each The Pluto Charon system is unusual in that the center of mass lies in open space between the two a characteristic sometimes associated with a double planet system The seven largest natural satellites in the Solar System those bigger than 2 500 km across are Jupiter s Galilean moons Ganymede Callisto Io and Europa Saturn s moon Titan Earth s moon and Neptune s captured natural satellite Triton Triton the smallest of these has more mass than all smaller natural satellites together Similarly in the next size group of nine mid sized natural satellites between 1 000 km and 1 600 km across Titania Oberon Rhea Iapetus Charon Ariel Umbriel Dione and Tethys the smallest Tethys has more mass than all smaller natural satellites together As well as the natural satellites of the various planets there are also over 80 known natural satellites of the dwarf planets minor planets and other small Solar System bodies Some studies estimate that up to 15 of all trans Neptunian objects could have satellites The following is a comparative table classifying the natural satellites in the Solar System by diameter The column on the right includes some notable planets dwarf planets asteroids and trans Neptunian objects for comparison The natural satellites of the planets are named after mythological figures These are predominantly Greek except for the Uranian natural satellites which are named after Shakespearean characters The twenty satellites massive enough to be round are in bold in the table below Minor planets and satellites where there is disagreement in the literature on roundness are italicized in the table below Mean diameter km Satellites of planets Satellites of dwarf planets Satellites of other minor planets Non satellites for comparisonEarth Mars Jupiter Saturn Uranus Neptune Orcus Pluto Haumea Quaoar Makemake Gonggong Eris4 000 6 000 Ganymede Callisto Titan Mercury3 000 4 000 Moon Io Europa2 000 3 000 Triton Eris Pluto1 000 2 000 Rhea Iapetus Dione Tethys Titania Oberon Umbriel Ariel Charon Makemake Haumea Gonggong Quaoar500 1 000 Enceladus Dysnomia Sedna Ceres Salacia Orcus Pallas Vesta many more TNOs250 500 Mimas Hyperion Miranda Proteus Nereid Vanth Hiʻiaka Salacia I Actaea Varda I Ilmare Lempo II Hiisi 10 Hygiea 704 Interamnia 87 Sylvia 47171 Lempo 107 Camilla and many others100 250 Amalthea Himalia Thebe Phoebe Janus Epimetheus Sycorax Puck Portia Larissa Galatea Despina Namaka S 2015 136472 1 S 2005 82075 1 Sila Nunam I Ceto I Phorcys Patroclus I Menoetius Lempo I Paha 20 more moons of TNOs 3 Juno 15760 Albion 5 Astraea 617 Patroclus 42355 Typhon and many others50 100 Elara Pasiphae Prometheus Pandora Caliban Juliet Belinda Cressida Rosalind Desdemona Bianca Thalassa Halimede Neso Naiad Weywot Xiangliu probably 90 Antiope I Typhon I Echidna Logos I Zoe 5 more moons of TNOs 90 Antiope 58534 Logos 253 Mathilde and many others25 50 Carme Metis Sinope Lysithea Ananke Siarnaq Helene Albiorix Atlas Pan Ophelia Cordelia Setebos Prospero Perdita Stephano Sao S 2002 N 5 Laomedeia Psamathe Hippocamp Hydra Nix Kalliope I Linus 1036 Ganymed 243 Ida and many others10 25 Phobos Deimos Leda Adrastea Telesto Paaliaq Calypso Ymir Kiviuq Tarvos Ijiraq Erriapus Mab Cupid Francisco Ferdinand Margaret Trinculo S 2023 U 1 S 2021 N 1 Kerberos Styx 762 Pulcova I Sylvia I Romulus 624 Hektor I Skamandrios Eugenia I Petit Prince 121 Hermione I 283 Emma I 1313 Berna I 107 Camilla I 433 Eros 1313 Berna and many others lt 10 79 moons 120 moons Sylvia II Remus Ida I Dactyl and many others manySee alsoCircumplanetary disk Accumulation of matter around a planet Co orbital moon Configuration of two or more astronomical objectsPages displaying short descriptions of redirect targets Exomoon Moon beyond the Solar System Inner moon Natural satellite orbiting inside the orbit of a larger moon Irregular moon Captured satellite following an irregular orbit Regular moon Satellites that formed around their parent planet List of natural satellites Naming of moons Quasi satellite Type of satellite in sync with another orbit Subsatellite A satellite that orbits a natural satellite aka Submoon Timeline of discovery of Solar System planets and their moons Trojan moon Configuration of two or more astronomical objectsPages displaying short descriptions of redirect targets Tug of war astronomy Ratio of gravitational forces on a satellite from the Sun and host planet Moons of planets The Moon Earth s natural satellite Moons of Mars Moons of Jupiter Moons of Saturn Moons of Uranus Moons of Neptune Moons of dwarf planets and small Solar System bodies Minor planet moon Moons of Pluto Dysnomia Eris s natural satellite Moons of Haumea S 2015 136472 1 Makemake s natural satellite Xiangliu Gonggong s natural satellite Weywot Quaoar s natural satellite Vanth Orcus binary natural satelliteReferences Planet and Satellite Names and Discoverers International Astronomical Union IAU Working Group for Planetary System Nomenclature WGPSN Retrieved 27 January 2012 Wm Robert Johnston 30 September 2018 Asteroids with Satellites Johnston s Archive Retrieved 22 October 2018 Canup Robin M Ward William R June 2006 A common mass scaling for satellite systems of gaseous planets Nature 441 7095 834 839 Bibcode 2006Natur 441 834C doi 10 1038 nature04860 ISSN 1476 4687 PMID 16778883 S2CID 4327454 Glenday Craig 2014 Guinness World Records 2014 Guinness World Records Limited p 186 ISBN 978 1 908843 15 9 Early History First Satellites www jpl nasa gov Archived from the original on 7 February 2018 Retrieved 8 February 2018 Kenneth R Lang The Cambridge Guide to the Solar System Archived 4 January 2023 at the Wayback Machine 2011 p 15 quote Any object that orbits a planet is now called a satellite and a natural satellite is also now called a moon Therese Encrenaz et al The Solar System 2004 p 30 Tilman Spohn Doris Breuer Torrence Johnson Encyclopedia of the Solar System Archived 4 January 2023 at the Wayback Machine 2014 p 18 David Andrew Weintraub Is Pluto a Planet A Historical Journey Through the Solar System p 65 quote the general concept of a moon as a satellite of a planet and planet as a satellite of a star Satellite www merriam webster com Merriam Webster Retrieved 16 November 2015 Stillman Dan 16 June 2015 What Is a Satellite www nasa gov NASA Retrieved 16 November 2015 F Marchis et al 2005 Discovery of the triple asteroidal system 87 Sylvia Nature 436 7052 822 824 Bibcode 2005Natur 436 822M doi 10 1038 nature04018 PMID 16094362 S2CID 4412813 Canup Robin M Ward William R 2008 Origin of Europa and the Galilean Satellites University of Arizona Press p 59 arXiv 0812 4995 Bibcode 2009euro book 59C ISBN 978 0 8165 2844 8 D Angelo G Podolak M 2015 Capture and Evolution of Planetesimals in Circumjovian Disks The Astrophysical Journal 806 1 29 arXiv 1504 04364 Bibcode 2015ApJ 806 203D doi 10 1088 0004 637X 806 2 203 S2CID 119216797 Encyclopedia of the Solar System page 366 Academic Press 2007 Lucy Ann Adams McFadden Paul Robert Weissman Torrence V Johnson Canup RM amp Asphaug E 2001 Origin of the Moon in a giant impact near the end of the Earth s formation Nature 412 6848 708 712 Bibcode 2001Natur 412 708C doi 10 1038 35089010 PMID 11507633 S2CID 4413525 Stern SA Weaver HA Steffl AJ Mutchler MJ et al 2006 A giant impact origin for Pluto s small natural satellites and satellite multiplicity in the Kuiper belt Nature 439 7079 946 49 Bibcode 2006Natur 439 946S doi 10 1038 nature04548 PMID 16495992 S2CID 4400037 Camille M Carlisle 30 December 2011 Pseudo moons Orbit Earth Sky amp Telescope Fedorets Grigori Granvik Mikael Jedicke Robert 15 March 2017 Orbit and size distributions for asteroids temporarily captured by the Earth Moon system Icarus 285 83 94 Bibcode 2017Icar 285 83F doi 10 1016 j icarus 2016 12 022 2006 RH120 6R10DB9 A second moon for the Earth Great Shefford Observatory 14 September 2017 Archived from the original on 6 February 2015 Retrieved 13 November 2017 Roger W Sinnott 17 April 2007 Earth s Other Moon Sky amp Telescope Archived from the original on 2 April 2012 Retrieved 12 March 2018 Barnes Rory ed 2010 Formation and Evolution of Exoplanets John Wiley amp Sons p 248 ISBN 978 3527408962 Northon Karen 3 June 2015 NASA s Hubble Finds Pluto s Moons Tumbling in Absolute Chaos NASA Retrieved 25 October 2015 Jones G H et al 2008 The Dust Halo of Saturn s Largest Icy Moon Rhea Jones et al 319 5868 1380 Science PDF Science 319 5868 1380 1384 Bibcode 2008Sci 319 1380J doi 10 1126 science 1151524 PMID 18323452 S2CID 206509814 Archived from the original PDF on 8 March 2018 Jeff Hecht 6 March 2008 Saturn satellite reveals first moon rings New Scientist Tiscareno Matthew S Burns Joseph A Cuzzi Jeffrey N Hedman Matthew M 2010 Cassini imaging search rules out rings around Rhea Tiscareno 2010 Geophysical Research Letters 37 14 n a arXiv 1008 1764 Bibcode 2010GeoRL 3714205T doi 10 1029 2010GL043663 S2CID 133143673 How Iapetus Saturn s outermost moon got its ridge 13 December 2010 Denk T Mottola S 2019 Cassini Observations of Saturn s Irregular Moons PDF 50th Lunar and Planetary Science Conference Lunar and Planetary Institute A moon with atmosphere The Planetary Society Archived from the original on 24 December 2019 Retrieved 24 December 2019 Hubble Finds Oxygen Atmosphere on Jupiter s Moon Europa HubbleSite org Archived from the original on 16 April 2023 Retrieved 13 May 2022 Hubble Finds Thin Oxygen Atmosphere on Ganymede Jet Propulsion Laboratory NASA 23 October 1996 Archived from the original on 4 May 2009 Retrieved 17 February 2017 Woo Marcus 27 January 2015 Why We re Looking for Alien Life on Moons Not Just Planets Wired Retrieved 27 January 2015 Hubble Discovers New Pluto Moon ESA Hubble Press Release Retrieved 13 July 2012 How Big Is Pluto New Horizons Settles Decades Long Debate NASA 13 July 2015 Archived from the original on 1 July 2017 Retrieved 16 July 2015 External linksWikimedia Commons has media related to Moons All moons Natural Satellite Physical Parameters JPL NASA with refs last updated July 2006 Moons of the Solar System The Planetary Society as of March 2009 The JPL s Solar System Dynamics page How Many Solar System Bodies NASA JPL Solar System Dynamics Retrieved 26 January 2012 Planetary Names Planet and Satellite Names and Discoverers Upper size limit for moons explained Kelly Young Nature vol 441 p 834 14 June 2006 Images of planets and major moons not to scale The Planetary Society Moon Montage s Album of moon images by Kevin M Gill The Atlas of Moons by the National Geographic SocietyJupiter s moons Sheppard Scott S The Jupiter Satellite and Moon Page Department of Terrestrial Magnetism at Carnegie Institution for Science Archived from the original on 31 May 2018 Retrieved 8 March 2018 Scott S Sheppard Scott S SheppardSaturn s moons Satellite hunters find four new moons of the planet Saturn David Brand 26 October 2000 Saturn s New Satellite S 2003 S1 Scott S Sheppard Portals AstronomySpaceflightOuter spaceSolar System