![Expansion of the universe](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi82LzZmL0NNQl9UaW1lbGluZTMwMF9ub19XTUFQLmpwZy8xNjAwcHgtQ01CX1RpbWVsaW5lMzAwX25vX1dNQVAuanBn.jpg )
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound to each other by gravity) move away at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpODJMelptTDBOTlFsOVVhVzFsYkdsdVpUTXdNRjl1YjE5WFRVRlFMbXB3Wnk4ek1EQndlQzFEVFVKZlZHbHRaV3hwYm1Vek1EQmZibTlmVjAxQlVDNXFjR2M9LmpwZw==.jpg)
Cosmic expansion is a key feature of Big Bang cosmology. It can be modeled mathematically with the Friedmann–Lemaître–Robertson–Walker metric (FLRW), where it corresponds to an increase in the scale of the spatial part of the universe's spacetime metric tensor (which governs the size and geometry of spacetime). Within this framework, the separation of objects over time is associated with the expansion of space itself. However, this is not a generally covariant description but rather only a choice of coordinates. Contrary to common misconception, it is equally valid to adopt a description in which space does not expand and objects simply move apart while under the influence of their mutual gravity. Although cosmic expansion is often framed as a consequence of general relativity, it is also predicted by Newtonian gravity.
According to inflation theory, the universe suddenly expanded during the inflationary epoch (about 10−32 of a second after the Big Bang), and its volume increased by a factor of at least 1078 (an expansion of distance by a factor of at least 1026 in each of the three dimensions). This would be equivalent to expanding an object 1 nanometer across (10−9 m, about half the width of a molecule of DNA) to one approximately 10.6 light-years across (about 1017 m, or 62 trillion miles). Cosmic expansion subsequently decelerated to much slower rates, until around 9.8 billion years after the Big Bang (4 billion years ago) it began to gradually expand more quickly, and is still doing so. Physicists have postulated the existence of dark energy, appearing as a cosmological constant in the simplest gravitational models, as a way to explain this late-time acceleration. According to the simplest extrapolation of the currently favored cosmological model, the Lambda-CDM model, this acceleration becomes dominant in the future.
History
In 1912–1914, Vesto Slipher discovered that light from remote galaxies was redshifted, a phenomenon later interpreted as galaxies receding from the Earth. In 1922, Alexander Friedmann used the Einstein field equations to provide theoretical evidence that the universe is expanding.
Swedish astronomer Knut Lundmark was the first person to find observational evidence for expansion, in 1924. According to Ian Steer of the NASA/IPAC Extragalactic Database of Galaxy Distances, "Lundmark's extragalactic distance estimates were far more accurate than Hubble's, consistent with an expansion rate (Hubble constant) that was within 1% of the best measurements today."
In 1927, Georges Lemaître independently reached a similar conclusion to Friedmann on a theoretical basis, and also presented observational evidence for a linear relationship between distance to galaxies and their recessional velocity.Edwin Hubble observationally confirmed Lundmark's and Lemaître's findings in 1929. Assuming the cosmological principle, these findings would imply that all galaxies are moving away from each other.
Astronomer Walter Baade recalculated the size of the known universe in the 1940s, doubling the previous calculation made by Hubble in 1929. He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome. For most of the second half of the 20th century, the value of the Hubble constant was estimated to be between 50 and 90 km⋅s−1⋅Mpc−1.
On 13 January 1994, NASA formally announced a completion of its repairs related to the main mirror of the Hubble Space Telescope, allowing for sharper images and, consequently, more accurate analyses of its observations. Shortly after the repairs were made, Wendy Freedman's 1994 Key Project analyzed the recession velocity of M100 from the core of the Virgo Cluster, offering a Hubble constant measurement of 80±17 km⋅s−1⋅Mpc−1. Later the same year, Adam Riess et al. used an empirical method of visual-band light-curve shapes to more finely estimate the luminosity of Type Ia supernovae. This further minimized the systematic measurement errors of the Hubble constant, to 67±7 km⋅s−1⋅Mpc−1. Reiss's measurements on the recession velocity of the nearby Virgo Cluster more closely agree with subsequent and independent analyses of Cepheid variable calibrations of Type Ia supernova, which estimates a Hubble constant of 73±7 km⋅s−1⋅Mpc−1. In 2003, David Spergel's analysis of the cosmic microwave background during the first year observations of the Wilkinson Microwave Anisotropy Probe satellite (WMAP) further agreed with the estimated expansion rates for local galaxies, 72±5 km⋅s−1⋅Mpc−1.
Structure of cosmic expansion
The universe at the largest scales is observed to be homogeneous (the same everywhere) and isotropic (the same in all directions), consistent with the cosmological principle. These constraints demand that any expansion of the universe accord with Hubble's law, in which objects recede from each observer with velocities proportional to their positions with respect to that observer. That is, recession velocities scale with (observer-centered) positions
according to
where the Hubble rate quantifies the rate of expansion.
is a function of cosmic time.
Dynamics of cosmic expansion
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOHdMekEwTDBWMmIyeDFkR2x2Ymw5dlpsOTBhR1ZmZFc1cGRtVnljMlV1YzNabkx6UXdNSEI0TFVWMmIyeDFkR2x2Ymw5dlpsOTBhR1ZmZFc1cGRtVnljMlV1YzNabkxuQnVadz09LnBuZw==.png)
Mathematically, the expansion of the universe is quantified by the scale factor, , which is proportional to the average separation between objects, such as galaxies. The scale factor is a function of time and is conventionally set to be
at the present time. Because the universe is expanding,
is smaller in the past and larger in the future. Extrapolating back in time with certain cosmological models will yield a moment when the scale factor was zero; our current understanding of cosmology sets this time at 13.787 ± 0.020 billion years ago. If the universe continues to expand forever, the scale factor will approach infinity in the future. It is also possible in principle for the universe to stop expanding and begin to contract, which corresponds to the scale factor decreasing in time.
The scale factor is a parameter of the FLRW metric, and its time evolution is governed by the Friedmann equations. The second Friedmann equation,
shows how the contents of the universe influence its expansion rate. Here, is the gravitational constant,
is the energy density within the universe,
is the pressure,
is the speed of light, and
is the cosmological constant. A positive energy density leads to deceleration of the expansion,
, and a positive pressure further decelerates expansion. On the other hand, sufficiently negative pressure with
leads to accelerated expansion, and the cosmological constant also accelerates expansion. Nonrelativistic matter is essentially pressureless, with
, while a gas of ultrarelativistic particles (such as a photon gas) has positive pressure
. Negative-pressure fluids, like dark energy, are not experimentally confirmed, but the existence of dark energy is inferred from astronomical observations.
Distances in the expanding universe
Comoving coordinates
In an expanding universe, it is often useful to study the evolution of structure with the expansion of the universe factored out. This motivates the use of comoving coordinates, which are defined to grow proportionally with the scale factor. If an object is moving only with the Hubble flow of the expanding universe, with no other motion, then it remains stationary in comoving coordinates. The comoving coordinates are the spatial coordinates in the FLRW metric.
Shape of the universe
The universe is a four-dimensional spacetime, but within a universe that obeys the cosmological principle, there is a natural choice of three-dimensional spatial surface. These are the surfaces on which observers who are stationary in comoving coordinates agree on the age of the universe. In a universe governed by special relativity, such surfaces would be hyperboloids, because relativistic time dilation means that rapidly receding distant observers' clocks are slowed, so that spatial surfaces must bend "into the future" over long distances. However, within general relativity, the shape of these comoving synchronous spatial surfaces is affected by gravity. Current observations are consistent with these spatial surfaces being geometrically flat (so that, for example, the angles of a triangle add up to 180 degrees).
Cosmological horizons
An expanding universe typically has a finite age. Light, and other particles, can have propagated only a finite distance. The comoving distance that such particles can have covered over the age of the universe is known as the particle horizon, and the region of the universe that lies within our particle horizon is known as the observable universe.
If the dark energy that is inferred to dominate the universe today is a cosmological constant, then the particle horizon converges to a finite value in the infinite future. This implies that the amount of the universe that we will ever be able to observe is limited. Many systems exist whose light can never reach us, because there is a cosmic event horizon induced by the repulsive gravity of the dark energy.
Within the study of the evolution of structure within the universe, a natural scale emerges, known as the Hubble horizon. Cosmological perturbations much larger than the Hubble horizon are not dynamical, because gravitational influences do not have time to propagate across them, while perturbations much smaller than the Hubble horizon are straightforwardly governed by Newtonian gravitational dynamics.
Consequences of cosmic expansion
Redshifts
For photons, expansion leads to the cosmological redshift. While the cosmological redshift is often explained as the stretching of photon wavelengths due to "expansion of space", it is more naturally viewed as a consequence of the Doppler effect.
Velocities
An object's peculiar velocity is its velocity with respect to the comoving coordinate grid, i.e., with respect to the average expansion-associated motion of the surrounding material. It is a measure of how a particle's motion deviates from the Hubble flow of the expanding universe. The peculiar velocities of nonrelativistic particles decay as the universe expands, in inverse proportion with the cosmic scale factor. This can be understood as a self-sorting effect. A particle that is moving in some direction gradually overtakes the Hubble flow of cosmic expansion in that direction, asymptotically approaching material with the same velocity as its own. More generally, the peculiar momenta of both relativistic and nonrelativistic particles decay in inverse proportion with the scale factor.
Special relativity is valid in all local inertial frames; analysis at the global level requires summation or integration of local comoving distances, all done at constant local proper time. Special relativity prohibits objects from moving faster than light with respect to a local reference frame, but cosmological observations require general relativity. In general relativity, relative relative velocity depends on time. For example, one might define the velocity of a distant galaxy as its velocity at the time a photon was emitted relative to observation at the present time, or its velocity when the photon is measured. For example, galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light. Visibility of these objects depends on the exact expansion history of the universe. Light that is emitted today from galaxies beyond the more-distant cosmological event horizon, about 5 gigaparsecs or 16 billion light-years, will never reach us, although we can still see the light that these galaxies emitted in the past. Because of the high rate of expansion, it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe. These details are a frequent source of confusion among amateurs and even professional physicists. Due to the non-intuitive nature of the subject and what has been described by some as "careless" choices of wording, certain descriptions of the metric expansion of space and the misconceptions to which such descriptions can lead are an ongoing subject of discussion within the fields of education and communication of scientific concepts.
Temperature
The universe cools as it expands. This follows from the decay of particles' peculiar momenta, as discussed above. It can also be understood as adiabatic cooling. The temperature of ultrarelativistic fluids, often called "radiation" and including the cosmic microwave background, scales inversely with the scale factor (i.e. ). The temperature of nonrelativistic matter drops more sharply, scaling as the inverse square of the scale factor (i.e.
).
Density
The contents of the universe dilute as it expands. The number of particles within a comoving volume remains fixed (on average), while the volume expands. For nonrelativistic matter, this implies that the energy density drops as , where
is the scale factor.
For ultrarelativistic particles ("radiation"), the energy density drops more sharply, as . This is because in addition to the volume dilution of the particle count, the energy of each particle (including the rest mass energy) also drops significantly due to the decay of peculiar momenta.
In general, we can consider a perfect fluid with pressure , where
is the energy density. The parameter
is the equation of state parameter. The energy density of such a fluid drops as
Nonrelativistic matter has while radiation has
. For an exotic fluid with negative pressure, like dark energy, the energy density drops more slowly; if
it remains constant in time. If
, corresponding to phantom energy, the energy density grows as the universe expands.
Expansion history
Cosmic inflation
Inflation is a period of accelerated expansion hypothesized to have occurred at a time of around 10−32 seconds. It would have been driven by the inflaton, a field that has a positive-energy false vacuum state. Inflation was originally proposed to explain the absence of exotic relics predicted by grand unified theories, such as magnetic monopoles, because the rapid expansion would have diluted such relics. It was subsequently realized that the accelerated expansion would also solve the horizon problem and the flatness problem. Additionally, quantum fluctuations during inflation would have created initial variations in the density of the universe, which gravity later amplified to yield the observed spectrum of matter density variations.: 157
During inflation, the cosmic scale factor grew exponentially in time. In order to solve the horizon and flatness problems, inflation must have lasted long enough that the scale factor grew by at least a factor of e60 (about 1026). : 162
Radiation epoch
The history of the universe after inflation but before a time of about 1 second is largely unknown. However, the universe is known to have been dominated by ultrarelativistic Standard Model particles, conventionally called radiation, by the time of neutrino decoupling at about 1 second. During radiation domination, cosmic expansion decelerated, with the scale factor growing proportionally with the square root of the time.
Matter epoch
Since radiation redshifts as the universe expands, eventually nonrelativistic matter came to dominate the energy density of the universe. This transition happened at a time of about 50 thousand years after the Big Bang. During the matter-dominated epoch, cosmic expansion also decelerated, with the scale factor growing as the 2/3 power of the time (). Also, gravitational structure formation is most efficient when nonrelativistic matter dominates, and this epoch is responsible for the formation of galaxies and the large-scale structure of the universe.
Dark energy
Around 3 billion years ago, at a time of about 11 billion years, dark energy is believed to have begun to dominate the energy density of the universe. This transition came about because dark energy does not dilute as the universe expands, instead maintaining a constant energy density. Similarly to inflation, dark energy drives accelerated expansion, such that the scale factor grows exponentially in time.
Measuring the expansion rate
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOWxMMlUwTDFKbFpITm9hV1owWDJKc2RXVnphR2xtZEM1emRtY3ZNall3Y0hndFVtVmtjMmhwWm5SZllteDFaWE5vYVdaMExuTjJaeTV3Ym1jPS5wbmc=.png)
The most direct way to measure the expansion rate is to independently measure the recession velocities and the distances of distant objects, such as galaxies. The ratio between these quantities gives the Hubble rate, in accordance with Hubble's law. Typically, the distance is measured using a standard candle, which is an object or event for which the intrinsic brightness is known. The object's distance can then be inferred from the observed apparent brightness. Meanwhile, the recession speed is measured through the redshift. Hubble used this approach for his original measurement of the expansion rate, by measuring the brightness of Cepheid variable stars and the redshifts of their host galaxies. More recently, using Type Ia supernovae, the expansion rate was measured to be H0 = 73.24±1.74 (km/s)/Mpc. This means that for every million parsecs of distance from the observer, recessional velocity of objects at that distance increases by about 73 kilometres per second (160,000 mph).
Supernovae are observable at such great distances that the light travel time therefrom can approach the age of the universe. Consequently, they can be used to measure not only the present-day expansion rate but also the expansion history. In work that was awarded the 2011 Nobel Prize in Physics, supernova observations were used to determine that cosmic expansion is accelerating in the present epoch.
By assuming a cosmological model, e.g. the Lambda-CDM model, another possibility is to infer the present-day expansion rate from the sizes of the largest fluctuations seen in the cosmic microwave background. A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H0 = 67.4±0.5 (km/s)/Mpc. There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.
A third option proposed recently is to use information from gravitational wave events (especially those involving the merger of neutron stars, like GW170817), to measure the expansion rate. Such measurements do not yet have the precision to resolve the Hubble tension.
In principle, the cosmic expansion history can also be measured by studying redshift drift: how redshifts, distances, fluxes, angular positions, and angular sizes of astronomical objects change over the course of the time that they are being observed. These effects are too small to detect with current equipment. However, changes in redshift or flux could be observed by the Square Kilometre Array or Extremely Large Telescope in the mid-2030s.: 155
References
- Overbye, Dennis (20 February 2017). "Cosmos Controversy: The Universe Is Expanding, but How Fast?". The New York Times. Retrieved 21 February 2017.
- Peacock (2008), arXiv:0809.4573
- Bunn & Hogg, American Journal of Physics 77, pp. 688–694 (2009), arXiv:0808.1081
- Lewis, Australian Physics 53(3), pp. 95–100 (2016), arXiv:1605.08634
- Tipler, Monthly Notices of the Royal Astronomical Society 282(1), pp. 206–210 (1996).
- Gibbons & Ellis, Classical and Quantum Gravity 31 (2), 025003 (2014), arXiv:1308.1852
- Slipher, V. M. (1913). "The Radial Velocity of the Andromeda Nebula". Lowell Observatory Bulletin. 1 (8): 56–57. Bibcode:1913LowOB...2...56S.
- "Vesto Slipher – American astronomer".
- Friedman, A. (1922). "Über die Krümmung des Raumes". Zeitschrift für Physik. 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. translated in Friedmann, A. (1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
- Steer, Ian (October 2012). "Who discovered Universe expansion?". Nature. 490 (7419): 176. arXiv:1212.1359. doi:10.1038/490176c. ISSN 1476-4687. PMID 23060180. S2CID 47038783.
- Lemaître, Georges (1927). "Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques" [A homogeneous universe of constant mass and increasing radius accounting for the radial speed of extra-galactic nebulae]. Annales de la Société Scientifique de Bruxelles. A47: 49–59. Bibcode:1927ASSB...47...49L.
- "Astronomer sleuth solves mystery of Big Cosmos discovery". Space.com. 14 November 2011.
- Baade, W. (1944) "The resolution of Messier 32, NGC 205, and the central region of the Andromeda nebula". ApJ 100. pp. 137–146
- Baade, W. (1956) "The period–luminosity relation of the Cepheids". PASP 68. pp. 5–16
- Allen, Nick. "Section 2: The Great Debate and the Great Mistake: Shapley, Hubble, Baade". The Cepheid Distance Scale: A History. Archived from the original on 10 December 2007. Retrieved 19 November 2011.
- Trauger, J. T. (1994). ""The on-orbit performance of WFPC2"". Astrophysical Journal Letters. 435: L3. Bibcode:1994ApJ...435L...3T. doi:10.1086/187580.
- Freedman, W. L. "The HST Key Project to Measure the Hubble Constant". www.stsci.edu. 813 Santa Barbara Street, Pasadena, California 91101.: Carnegie Observatories. Retrieved 17 June 2023.
{{cite web}}
: CS1 maint: location (link) - Riess, Adam G. (January 1995). ""Using Type IA supernova light curve shapes to measure the Hubble constant"". The Astrophysical Journal. 438: L17. arXiv:astro-ph/9410054. Bibcode:1995ApJ...438L..17R. doi:10.1086/187704. S2CID 118938423.
- Spergel, D. N. (September 2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP)1 Observations: Determination of Cosmological Parameters". The Astrophysical Journal Supplement Series. 148 (1): 175–194. arXiv:astro-ph/0302209. Bibcode:2003ApJS..148..175S. doi:10.1086/377226. S2CID 10794058.
- Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv:astro-ph/0310808. Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. ISSN 1323-3580. S2CID 13068122.
- Bunn, E. F.; Hogg, D. W. (2009). "The kinematic origin of the cosmological redshift". American Journal of Physics. 77 (8): 688–694. arXiv:0808.1081. Bibcode:2009AmJPh..77..688B. doi:10.1119/1.3129103. S2CID 1365918.
- Whiting, Alan B. (2004). "The Expansion of Space: Free Particle Motion and the Cosmological Redshift". The Observatory. 124: 174. arXiv:astro-ph/0404095. Bibcode:2004Obs...124..174W.
- Baryshev, Yu. V. (2008). "Expanding Space: The Root of Conceptual Problems of the Cosmological Physics". Practical Cosmology. 2: 20–30. arXiv:0810.0153. Bibcode:2008pc2..conf...20B.
- Peacock, J. A. (2008). "A diatribe on expanding space". arXiv:0809.4573 [astro-ph].
- Dodelson, Scott; Schmidt, Fabian (2021). Modern cosmology (2 ed.). London: Academic Press. ISBN 978-0-12-815948-4. OCLC 1180066787.
- Allahverdi et al., Open J. Astrophys. 4, 1 (2021), arXiv:2006.16182
- de Salas et al., Physical Review D. 92, 123534 (2015), arXiv:1511.00672
- Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J. (2016). "A 2.4% Determination of the Local Value of the Hubble Constant". The Astrophysical Journal. 826 (1): 56. arXiv:1604.01424. Bibcode:2016ApJ...826...56R. doi:10.3847/0004-637X/826/1/56. S2CID 118630031.
- "The Nobel Prize in Physics 2011". NobelPrize.org. Retrieved 17 June 2023.
- Collaboration, Planck (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics. 641: A6. arXiv:1807.06209. Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. S2CID 119335614.
- Lerner, Louise (22 October 2018). "Gravitational waves could soon provide measure of universe's expansion". Phys.org. Retrieved 22 October 2018.
- Chen, Hsin-Yu; Fishbach, Maya; Holz, Daniel E. (17 October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
- Abdalla, Elcio; Abellán, Guillermo Franco; Aboubrahim, Amin; Agnello, Adriano; Akarsu, Özgür; Akrami, Yashar; Alestas, George; Aloni, Daniel; Amendola, Luca; Anchordoqui, Luis A.; Anderson, Richard I.; Arendse, Nikki; Asgari, Marika; Ballardini, Mario; Barger, Vernon (1 June 2022). "Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies". Journal of High Energy Astrophysics. 34: 49–211. doi:10.1016/j.jheap.2022.04.002. ISSN 2214-4048.
Printed references
- Eddington, Arthur. The Expanding Universe: Astronomy's 'Great Debate', 1900–1931. Press Syndicate of the University of Cambridge, 1933.
- Liddle, Andrew R. and Lyth, David H. Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
- Lineweaver, Charles H. and Davis, Tamara M. "Misconceptions about the Big Bang", Scientific American, March 2005 (non-free content).
- Mook, Delo E. and Thomas Vargish. Inside Relativity. Princeton University Press, 1991.
External links
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2Wlc0dmRHaDFiV0l2TkM4MFlTOURiMjF0YjI1ekxXeHZaMjh1YzNabkx6TXdjSGd0UTI5dGJXOXVjeTFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
![image](https://www.english.nina.az/wikipedia/image/aHR0cHM6Ly93d3cuZW5nbGlzaC5uaW5hLmF6L3dpa2lwZWRpYS9pbWFnZS9hSFIwY0hNNkx5OTFjR3h2WVdRdWQybHJhVzFsWkdsaExtOXlaeTkzYVd0cGNHVmthV0V2WTI5dGJXOXVjeTkwYUhWdFlpOW1MMlpoTDFkcGEybHhkVzkwWlMxc2IyZHZMbk4yWnk4ek5IQjRMVmRwYTJseGRXOTBaUzFzYjJkdkxuTjJaeTV3Ym1jPS5wbmc=.png)
- Swenson, Jim, Answer to a question about the expanding universe Archived 11 January 2009 at the Wayback Machine
- Felder, Gary, "The Expanding universe".
- NASA's WMAP team offers an "Explanation of the universal expansion" at an elementary level.
- Hubble Tutorial from the University of Wisconsin Physics Department Archived 9 June 2014 at the Wayback Machine
- Expanding raisin bread from the University of Winnipeg: an illustration, but no explanation
- "Ant on a balloon" analogy to explain the expanding universe at "Ask an Astronomer" (the astronomer who provides this explanation is not specified).
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time It is an intrinsic expansion so it does not mean that the universe expands into anything or that space exists outside it To any observer in the universe it appears that all but the nearest galaxies which are bound to each other by gravity move away at speeds that are proportional to their distance from the observer on average While objects cannot move faster than light this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects A graphical representation of the expansion of the universe from the Big Bang to the present day with the inflationary epoch represented as the dramatic expansion seen on the left This visualization shows only a section of the universe the empty space outside the diagram should not be taken to represent empty space outside the universe which does not necessarily exist Cosmic expansion is a key feature of Big Bang cosmology It can be modeled mathematically with the Friedmann Lemaitre Robertson Walker metric FLRW where it corresponds to an increase in the scale of the spatial part of the universe s spacetime metric tensor which governs the size and geometry of spacetime Within this framework the separation of objects over time is associated with the expansion of space itself However this is not a generally covariant description but rather only a choice of coordinates Contrary to common misconception it is equally valid to adopt a description in which space does not expand and objects simply move apart while under the influence of their mutual gravity Although cosmic expansion is often framed as a consequence of general relativity it is also predicted by Newtonian gravity According to inflation theory the universe suddenly expanded during the inflationary epoch about 10 32 of a second after the Big Bang and its volume increased by a factor of at least 1078 an expansion of distance by a factor of at least 1026 in each of the three dimensions This would be equivalent to expanding an object 1 nanometer across 10 9 m about half the width of a molecule of DNA to one approximately 10 6 light years across about 1017 m or 62 trillion miles Cosmic expansion subsequently decelerated to much slower rates until around 9 8 billion years after the Big Bang 4 billion years ago it began to gradually expand more quickly and is still doing so Physicists have postulated the existence of dark energy appearing as a cosmological constant in the simplest gravitational models as a way to explain this late time acceleration According to the simplest extrapolation of the currently favored cosmological model the Lambda CDM model this acceleration becomes dominant in the future HistoryIn 1912 1914 Vesto Slipher discovered that light from remote galaxies was redshifted a phenomenon later interpreted as galaxies receding from the Earth In 1922 Alexander Friedmann used the Einstein field equations to provide theoretical evidence that the universe is expanding Swedish astronomer Knut Lundmark was the first person to find observational evidence for expansion in 1924 According to Ian Steer of the NASA IPAC Extragalactic Database of Galaxy Distances Lundmark s extragalactic distance estimates were far more accurate than Hubble s consistent with an expansion rate Hubble constant that was within 1 of the best measurements today In 1927 Georges Lemaitre independently reached a similar conclusion to Friedmann on a theoretical basis and also presented observational evidence for a linear relationship between distance to galaxies and their recessional velocity Edwin Hubble observationally confirmed Lundmark s and Lemaitre s findings in 1929 Assuming the cosmological principle these findings would imply that all galaxies are moving away from each other Astronomer Walter Baade recalculated the size of the known universe in the 1940s doubling the previous calculation made by Hubble in 1929 He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome For most of the second half of the 20th century the value of the Hubble constant was estimated to be between 50 and 90 km s 1 Mpc 1 On 13 January 1994 NASA formally announced a completion of its repairs related to the main mirror of the Hubble Space Telescope allowing for sharper images and consequently more accurate analyses of its observations Shortly after the repairs were made Wendy Freedman s 1994 Key Project analyzed the recession velocity of M100 from the core of the Virgo Cluster offering a Hubble constant measurement of 80 17 km s 1 Mpc 1 Later the same year Adam Riess et al used an empirical method of visual band light curve shapes to more finely estimate the luminosity of Type Ia supernovae This further minimized the systematic measurement errors of the Hubble constant to 67 7 km s 1 Mpc 1 Reiss s measurements on the recession velocity of the nearby Virgo Cluster more closely agree with subsequent and independent analyses of Cepheid variable calibrations of Type Ia supernova which estimates a Hubble constant of 73 7 km s 1 Mpc 1 In 2003 David Spergel s analysis of the cosmic microwave background during the first year observations of the Wilkinson Microwave Anisotropy Probe satellite WMAP further agreed with the estimated expansion rates for local galaxies 72 5 km s 1 Mpc 1 Structure of cosmic expansionThe universe at the largest scales is observed to be homogeneous the same everywhere and isotropic the same in all directions consistent with the cosmological principle These constraints demand that any expansion of the universe accord with Hubble s law in which objects recede from each observer with velocities proportional to their positions with respect to that observer That is recession velocities v displaystyle vec v scale with observer centered positions x displaystyle vec x according to v Hx displaystyle vec v H vec x where the Hubble rate H displaystyle H quantifies the rate of expansion H displaystyle H is a function of cosmic time Dynamics of cosmic expansionThe expansion history depends on the density of the universe W on this graph corresponds to the ratio of the matter density to the critical density for a matter dominated universe The acceleration curve shows the trajectory of the scale factor for a universe with dark energy Mathematically the expansion of the universe is quantified by the scale factor a displaystyle a which is proportional to the average separation between objects such as galaxies The scale factor is a function of time and is conventionally set to be a 1 displaystyle a 1 at the present time Because the universe is expanding a displaystyle a is smaller in the past and larger in the future Extrapolating back in time with certain cosmological models will yield a moment when the scale factor was zero our current understanding of cosmology sets this time at 13 787 0 020 billion years ago If the universe continues to expand forever the scale factor will approach infinity in the future It is also possible in principle for the universe to stop expanding and begin to contract which corresponds to the scale factor decreasing in time The scale factor a displaystyle a is a parameter of the FLRW metric and its time evolution is governed by the Friedmann equations The second Friedmann equation a a 4pG3 r 3pc2 Lc23 displaystyle frac ddot a a frac 4 pi G 3 left rho frac 3p c 2 right frac Lambda c 2 3 shows how the contents of the universe influence its expansion rate Here G displaystyle G is the gravitational constant r displaystyle rho is the energy density within the universe p displaystyle p is the pressure c displaystyle c is the speed of light and L displaystyle Lambda is the cosmological constant A positive energy density leads to deceleration of the expansion a lt 0 displaystyle ddot a lt 0 and a positive pressure further decelerates expansion On the other hand sufficiently negative pressure with p lt rc2 3 displaystyle p lt rho c 2 3 leads to accelerated expansion and the cosmological constant also accelerates expansion Nonrelativistic matter is essentially pressureless with p rc2 displaystyle p ll rho c 2 while a gas of ultrarelativistic particles such as a photon gas has positive pressure p rc2 3 displaystyle p rho c 2 3 Negative pressure fluids like dark energy are not experimentally confirmed but the existence of dark energy is inferred from astronomical observations Distances in the expanding universeComoving coordinates In an expanding universe it is often useful to study the evolution of structure with the expansion of the universe factored out This motivates the use of comoving coordinates which are defined to grow proportionally with the scale factor If an object is moving only with the Hubble flow of the expanding universe with no other motion then it remains stationary in comoving coordinates The comoving coordinates are the spatial coordinates in the FLRW metric Shape of the universe The universe is a four dimensional spacetime but within a universe that obeys the cosmological principle there is a natural choice of three dimensional spatial surface These are the surfaces on which observers who are stationary in comoving coordinates agree on the age of the universe In a universe governed by special relativity such surfaces would be hyperboloids because relativistic time dilation means that rapidly receding distant observers clocks are slowed so that spatial surfaces must bend into the future over long distances However within general relativity the shape of these comoving synchronous spatial surfaces is affected by gravity Current observations are consistent with these spatial surfaces being geometrically flat so that for example the angles of a triangle add up to 180 degrees Cosmological horizons An expanding universe typically has a finite age Light and other particles can have propagated only a finite distance The comoving distance that such particles can have covered over the age of the universe is known as the particle horizon and the region of the universe that lies within our particle horizon is known as the observable universe If the dark energy that is inferred to dominate the universe today is a cosmological constant then the particle horizon converges to a finite value in the infinite future This implies that the amount of the universe that we will ever be able to observe is limited Many systems exist whose light can never reach us because there is a cosmic event horizon induced by the repulsive gravity of the dark energy Within the study of the evolution of structure within the universe a natural scale emerges known as the Hubble horizon Cosmological perturbations much larger than the Hubble horizon are not dynamical because gravitational influences do not have time to propagate across them while perturbations much smaller than the Hubble horizon are straightforwardly governed by Newtonian gravitational dynamics Consequences of cosmic expansionRedshifts For photons expansion leads to the cosmological redshift While the cosmological redshift is often explained as the stretching of photon wavelengths due to expansion of space it is more naturally viewed as a consequence of the Doppler effect Velocities An object s peculiar velocity is its velocity with respect to the comoving coordinate grid i e with respect to the average expansion associated motion of the surrounding material It is a measure of how a particle s motion deviates from the Hubble flow of the expanding universe The peculiar velocities of nonrelativistic particles decay as the universe expands in inverse proportion with the cosmic scale factor This can be understood as a self sorting effect A particle that is moving in some direction gradually overtakes the Hubble flow of cosmic expansion in that direction asymptotically approaching material with the same velocity as its own More generally the peculiar momenta of both relativistic and nonrelativistic particles decay in inverse proportion with the scale factor Special relativity is valid in all local inertial frames analysis at the global level requires summation or integration of local comoving distances all done at constant local proper time Special relativity prohibits objects from moving faster than light with respect to a local reference frame but cosmological observations require general relativity In general relativity relative relative velocity depends on time For example one might define the velocity of a distant galaxy as its velocity at the time a photon was emitted relative to observation at the present time or its velocity when the photon is measured For example galaxies that are farther than the Hubble radius approximately 4 5 gigaparsecs or 14 7 billion light years away from us have a recession speed that is faster than the speed of light Visibility of these objects depends on the exact expansion history of the universe Light that is emitted today from galaxies beyond the more distant cosmological event horizon about 5 gigaparsecs or 16 billion light years will never reach us although we can still see the light that these galaxies emitted in the past Because of the high rate of expansion it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe These details are a frequent source of confusion among amateurs and even professional physicists Due to the non intuitive nature of the subject and what has been described by some as careless choices of wording certain descriptions of the metric expansion of space and the misconceptions to which such descriptions can lead are an ongoing subject of discussion within the fields of education and communication of scientific concepts Temperature The universe cools as it expands This follows from the decay of particles peculiar momenta as discussed above It can also be understood as adiabatic cooling The temperature of ultrarelativistic fluids often called radiation and including the cosmic microwave background scales inversely with the scale factor i e T a 1 displaystyle T propto a 1 The temperature of nonrelativistic matter drops more sharply scaling as the inverse square of the scale factor i e T a 2 displaystyle T propto a 2 Density The contents of the universe dilute as it expands The number of particles within a comoving volume remains fixed on average while the volume expands For nonrelativistic matter this implies that the energy density drops as r a 3 displaystyle rho propto a 3 where a displaystyle a is the scale factor For ultrarelativistic particles radiation the energy density drops more sharply as r a 4 displaystyle rho propto a 4 This is because in addition to the volume dilution of the particle count the energy of each particle including the rest mass energy also drops significantly due to the decay of peculiar momenta In general we can consider a perfect fluid with pressure p wr displaystyle p w rho where r displaystyle rho is the energy density The parameter w displaystyle w is the equation of state parameter The energy density of such a fluid drops as r a 3 1 w displaystyle rho propto a 3 1 w Nonrelativistic matter has w 0 displaystyle w 0 while radiation has w 1 3 displaystyle w 1 3 For an exotic fluid with negative pressure like dark energy the energy density drops more slowly if w 1 displaystyle w 1 it remains constant in time If w lt 1 displaystyle w lt 1 corresponding to phantom energy the energy density grows as the universe expands Expansion historyCosmic inflation Inflation is a period of accelerated expansion hypothesized to have occurred at a time of around 10 32 seconds It would have been driven by the inflaton a field that has a positive energy false vacuum state Inflation was originally proposed to explain the absence of exotic relics predicted by grand unified theories such as magnetic monopoles because the rapid expansion would have diluted such relics It was subsequently realized that the accelerated expansion would also solve the horizon problem and the flatness problem Additionally quantum fluctuations during inflation would have created initial variations in the density of the universe which gravity later amplified to yield the observed spectrum of matter density variations 157 During inflation the cosmic scale factor grew exponentially in time In order to solve the horizon and flatness problems inflation must have lasted long enough that the scale factor grew by at least a factor of e60 about 1026 162 Radiation epoch The history of the universe after inflation but before a time of about 1 second is largely unknown However the universe is known to have been dominated by ultrarelativistic Standard Model particles conventionally called radiation by the time of neutrino decoupling at about 1 second During radiation domination cosmic expansion decelerated with the scale factor growing proportionally with the square root of the time Matter epoch Since radiation redshifts as the universe expands eventually nonrelativistic matter came to dominate the energy density of the universe This transition happened at a time of about 50 thousand years after the Big Bang During the matter dominated epoch cosmic expansion also decelerated with the scale factor growing as the 2 3 power of the time a t2 3 displaystyle a propto t 2 3 Also gravitational structure formation is most efficient when nonrelativistic matter dominates and this epoch is responsible for the formation of galaxies and the large scale structure of the universe Dark energy Around 3 billion years ago at a time of about 11 billion years dark energy is believed to have begun to dominate the energy density of the universe This transition came about because dark energy does not dilute as the universe expands instead maintaining a constant energy density Similarly to inflation dark energy drives accelerated expansion such that the scale factor grows exponentially in time Measuring the expansion rateWhen an object is receding its light gets stretched redshifted When the object is approaching its light gets compressed blueshifted The most direct way to measure the expansion rate is to independently measure the recession velocities and the distances of distant objects such as galaxies The ratio between these quantities gives the Hubble rate in accordance with Hubble s law Typically the distance is measured using a standard candle which is an object or event for which the intrinsic brightness is known The object s distance can then be inferred from the observed apparent brightness Meanwhile the recession speed is measured through the redshift Hubble used this approach for his original measurement of the expansion rate by measuring the brightness of Cepheid variable stars and the redshifts of their host galaxies More recently using Type Ia supernovae the expansion rate was measured to be H0 73 24 1 74 km s Mpc This means that for every million parsecs of distance from the observer recessional velocity of objects at that distance increases by about 73 kilometres per second 160 000 mph Supernovae are observable at such great distances that the light travel time therefrom can approach the age of the universe Consequently they can be used to measure not only the present day expansion rate but also the expansion history In work that was awarded the 2011 Nobel Prize in Physics supernova observations were used to determine that cosmic expansion is accelerating in the present epoch By assuming a cosmological model e g the Lambda CDM model another possibility is to infer the present day expansion rate from the sizes of the largest fluctuations seen in the cosmic microwave background A higher expansion rate would imply a smaller characteristic size of CMB fluctuations and vice versa The Planck collaboration measured the expansion rate this way and determined H0 67 4 0 5 km s Mpc There is a disagreement between this measurement and the supernova based measurements known as the Hubble tension A third option proposed recently is to use information from gravitational wave events especially those involving the merger of neutron stars like GW170817 to measure the expansion rate Such measurements do not yet have the precision to resolve the Hubble tension In principle the cosmic expansion history can also be measured by studying redshift drift how redshifts distances fluxes angular positions and angular sizes of astronomical objects change over the course of the time that they are being observed These effects are too small to detect with current equipment However changes in redshift or flux could be observed by the Square Kilometre Array or Extremely Large Telescope in the mid 2030s 155 ReferencesOverbye Dennis 20 February 2017 Cosmos Controversy The Universe Is Expanding but How Fast The New York Times Retrieved 21 February 2017 Peacock 2008 arXiv 0809 4573 Bunn amp Hogg American Journal of Physics 77 pp 688 694 2009 arXiv 0808 1081 Lewis Australian Physics 53 3 pp 95 100 2016 arXiv 1605 08634 Tipler Monthly Notices of the Royal Astronomical Society 282 1 pp 206 210 1996 Gibbons amp Ellis Classical and Quantum Gravity 31 2 025003 2014 arXiv 1308 1852 Slipher V M 1913 The Radial Velocity of the Andromeda Nebula Lowell Observatory Bulletin 1 8 56 57 Bibcode 1913LowOB 2 56S Vesto Slipher American astronomer Friedman A 1922 Uber die Krummung des Raumes Zeitschrift fur Physik 10 1 377 386 Bibcode 1922ZPhy 10 377F doi 10 1007 BF01332580 S2CID 125190902 translated in Friedmann A 1999 On the Curvature of Space General Relativity and Gravitation 31 12 1991 2000 Bibcode 1999GReGr 31 1991F doi 10 1023 A 1026751225741 S2CID 122950995 Steer Ian October 2012 Who discovered Universe expansion Nature 490 7419 176 arXiv 1212 1359 doi 10 1038 490176c ISSN 1476 4687 PMID 23060180 S2CID 47038783 Lemaitre Georges 1927 Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra galactiques A homogeneous universe of constant mass and increasing radius accounting for the radial speed of extra galactic nebulae Annales de la Societe Scientifique de Bruxelles A47 49 59 Bibcode 1927ASSB 47 49L Astronomer sleuth solves mystery of Big Cosmos discovery Space com 14 November 2011 Baade W 1944 The resolution of Messier 32 NGC 205 and the central region of the Andromeda nebula ApJ 100 pp 137 146 Baade W 1956 The period luminosity relation of the Cepheids PASP 68 pp 5 16 Allen Nick Section 2 The Great Debate and the Great Mistake Shapley Hubble Baade The Cepheid Distance Scale A History Archived from the original on 10 December 2007 Retrieved 19 November 2011 Trauger J T 1994 The on orbit performance of WFPC2 Astrophysical Journal Letters 435 L3 Bibcode 1994ApJ 435L 3T doi 10 1086 187580 Freedman W L The HST Key Project to Measure the Hubble Constant www stsci edu 813 Santa Barbara Street Pasadena California 91101 Carnegie Observatories Retrieved 17 June 2023 a href wiki Template Cite web title Template Cite web cite web a CS1 maint location link Riess Adam G January 1995 Using Type IA supernova light curve shapes to measure the Hubble constant The Astrophysical Journal 438 L17 arXiv astro ph 9410054 Bibcode 1995ApJ 438L 17R doi 10 1086 187704 S2CID 118938423 Spergel D N September 2003 First Year Wilkinson Microwave Anisotropy Probe WMAP 1 Observations Determination of Cosmological Parameters The Astrophysical Journal Supplement Series 148 1 175 194 arXiv astro ph 0302209 Bibcode 2003ApJS 148 175S doi 10 1086 377226 S2CID 10794058 Davis Tamara M Lineweaver Charles H 2004 Expanding Confusion common misconceptions of cosmological horizons and the superluminal expansion of the Universe Publications of the Astronomical Society of Australia 21 1 97 109 arXiv astro ph 0310808 Bibcode 2004PASA 21 97D doi 10 1071 AS03040 ISSN 1323 3580 S2CID 13068122 Bunn E F Hogg D W 2009 The kinematic origin of the cosmological redshift American Journal of Physics 77 8 688 694 arXiv 0808 1081 Bibcode 2009AmJPh 77 688B doi 10 1119 1 3129103 S2CID 1365918 Whiting Alan B 2004 The Expansion of Space Free Particle Motion and the Cosmological Redshift The Observatory 124 174 arXiv astro ph 0404095 Bibcode 2004Obs 124 174W Baryshev Yu V 2008 Expanding Space The Root of Conceptual Problems of the Cosmological Physics Practical Cosmology 2 20 30 arXiv 0810 0153 Bibcode 2008pc2 conf 20B Peacock J A 2008 A diatribe on expanding space arXiv 0809 4573 astro ph Dodelson Scott Schmidt Fabian 2021 Modern cosmology 2 ed London Academic Press ISBN 978 0 12 815948 4 OCLC 1180066787 Allahverdi et al Open J Astrophys 4 1 2021 arXiv 2006 16182 de Salas et al Physical Review D 92 123534 2015 arXiv 1511 00672 Riess Adam G Macri Lucas M Hoffmann Samantha L Scolnic Dan Casertano Stefano Filippenko Alexei V Tucker Brad E Reid Mark J Jones David O Silverman Jeffrey M Chornock Ryan Challis Peter Yuan Wenlong Brown Peter J Foley Ryan J 2016 A 2 4 Determination of the Local Value of the Hubble Constant The Astrophysical Journal 826 1 56 arXiv 1604 01424 Bibcode 2016ApJ 826 56R doi 10 3847 0004 637X 826 1 56 S2CID 118630031 The Nobel Prize in Physics 2011 NobelPrize org Retrieved 17 June 2023 Collaboration Planck 2020 Planck 2018 results VI Cosmological parameters Astronomy amp Astrophysics 641 A6 arXiv 1807 06209 Bibcode 2020A amp A 641A 6P doi 10 1051 0004 6361 201833910 S2CID 119335614 Lerner Louise 22 October 2018 Gravitational waves could soon provide measure of universe s expansion Phys org Retrieved 22 October 2018 Chen Hsin Yu Fishbach Maya Holz Daniel E 17 October 2018 A two per cent Hubble constant measurement from standard sirens within five years Nature 562 7728 545 547 arXiv 1712 06531 Bibcode 2018Natur 562 545C doi 10 1038 s41586 018 0606 0 PMID 30333628 S2CID 52987203 Abdalla Elcio Abellan Guillermo Franco Aboubrahim Amin Agnello Adriano Akarsu Ozgur Akrami Yashar Alestas George Aloni Daniel Amendola Luca Anchordoqui Luis A Anderson Richard I Arendse Nikki Asgari Marika Ballardini Mario Barger Vernon 1 June 2022 Cosmology intertwined A review of the particle physics astrophysics and cosmology associated with the cosmological tensions and anomalies Journal of High Energy Astrophysics 34 49 211 doi 10 1016 j jheap 2022 04 002 ISSN 2214 4048 Printed referencesEddington Arthur The Expanding Universe Astronomy s Great Debate 1900 1931 Press Syndicate of the University of Cambridge 1933 Liddle Andrew R and Lyth David H Cosmological Inflation and Large Scale Structure Cambridge University Press 2000 Lineweaver Charles H and Davis Tamara M Misconceptions about the Big Bang Scientific American March 2005 non free content Mook Delo E and Thomas Vargish Inside Relativity Princeton University Press 1991 External linksWikimedia Commons has media related to Expansion of the universe Wikiquote has quotations related to Expansion of the universe Swenson Jim Answer to a question about the expanding universe Archived 11 January 2009 at the Wayback Machine Felder Gary The Expanding universe NASA s WMAP team offers an Explanation of the universal expansion at an elementary level Hubble Tutorial from the University of Wisconsin Physics Department Archived 9 June 2014 at the Wayback Machine Expanding raisin bread from the University of Winnipeg an illustration but no explanation Ant on a balloon analogy to explain the expanding universe at Ask an Astronomer the astronomer who provides this explanation is not specified Portals PhysicsAstronomyStarsSpaceflightSolar System